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The conditions for achieving maximum radiation on target under conditions of "fast" 
control of the amplitude-phase profile of the beam in the radiation plane are formulated. 

The numerical schemes for adaptive and program phase control are examined in 
the aberration-free approximation for a medium with nonlinearity of the wind type. 
Analysis of the results  makes it possible to identify regions where phase correction is 
very effective and regions where such correction gives only an insignificant gain. 

 
 

The propagation of high-power laser radiation in 
the atmosphere is accompanied by different nonlinear 
effects that distort the spatial and temporal charac-
teristics of the radiation.1 We shall examine the pos-
sibility of compensating the nonlinear distortions by 
means of phase correction. 

Let high-power optical radiation enter a nonlin-
ear medium, and assume that the curvature of the 
wavefront can be controlled. 

The problem is to minimize the angular diver-
gence in the far zone of diffraction after the beam 
has passed through a thin layer of the nonlinear me-
dium with effective thickness zs (z is the propagation 
coordinate). We assume that the angular divergence 
reaches its minimum value when the intensity at the 
point of reception is maximum. 

We shall study the case of radiation when 
 

 
 
where cor is the correction time of the phase front at 
the radiation source and nl is the nonlinear response 
time of the medium, whose value was determined in 
Ref. 2 for a thermal nonlinearity. Satisfaction of this 
condition means that the phase correction is per-
formed for radiation propagating in a "frozen" re-
fractive medium. 

In Ref. 3 it was shown for partially coherent 
radiation, whose propagation is described by the 
radiation transfer equation, that if the source is 
placed at the point of reception, located inside the 
nonlinear layer, than the wave arriving from it in 
the initial plane will give the optimal phase front. 
In other words, we obtain maximum intensity at the 
point of reception by transmitting a beam that is 
phase-conjugated with respect to the beam arriving 
from the point source. For the case when the point 
of reception is located beyond the nonlinear layer in 
the far zone of diffraction, the wave emanating from 
it arrives as a plane wave at the output end of the 

nonlinear layer. Having passed through the layer the 
wave arrives in the initial plane with some curvature 
of the phase front. By constructing the phase-
conjugate front for the transmitted beam we obtain 
maximum intensity at the point of reception. This was 
proved in Ref. 4 in the aberration-free approximation. 

In Refs. 5 and 6 it was proved in the parabolic-
equation approximation for the ñàså when the refrac-
tive properties of the medium can be described in the 
phase-screen approximation that maximum intensity 
at the point of reception is achieved if a front that is 
the conjugate of the wavefront emanating from the 
point of reception is formed in the radiation plane. 

We shall show that this condition is also satis-
fied for the case when the phase-screen approxima-
tion is not applicable. 

We give the field in the radiation plane in the 
form 
 

 
 
where A() is the fixed amplitude distribution on 
the field on the radiating aperture Sr and () is the 
controlled phase distribution. 

The field at the point of reception can be repre-
sented in the form 
 

 
 
where G+ is the Green’s function describing the for-
ward propagation of the wave. According to the re-
ciprocity theorem 
 

 
 
where G– is the Green’s function describing back-
ward propagation of the wave, and A–() and () 
are the distribution of the amplitude and phase of 
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the wave emanating from the point (z0, 0) in the 
plane z = 0. 

Then we obtain for the intensity at the point of 
the reception 
 

 
 

 (1) 
 

It is obvious that maximum intensity is achieved 
when the condition 
 

 (2) 
 

is satisfied, i.e., when the phase in the radiation 
plane is the conjugate of the phase of the wave ema-
nating from the point of reception. If the refractive 
medium has a focusing effect on the radiation, then 
at the radiating aperture the value of the amplitude 
A_ of the wave emanating from the point of recep-
tion will be greater than the corresponding ampli-
tude of the wave propagating in a uniform medium. 
Then, as follows from Eq. (1), the intensity at the 
point of reception will exceed the diffraction limit. 
Conversely, if the medium has a defocusing effect, 
then the diffraction limit becomes unattainable for 
any phase correction.3, 4 

Next, we shall study the situation when in ad-
dition to controlling the phase it is also possible to 
control the amplitude distribution on the radiating 
aperture, maintaining the beam power 
 

 
 

constant. The problem is to find an amplitude distri-
bution that maximizes the intensity at the point of 
reception. As follows from Eq. (1), the intensity 
reaches its maximum value when, under the condi-
tion (2), the integral 
 

 
 

Is maximized or, which is the same thing, the fol-
lowing expression is minimized: 
 

 (3) 
 

where C1 is a constant determined from the condition 
 

 
 

Transforming the expression (3) into the form 
 

 
 

we find that the intensity at the point of reception is 
maximized if 
 

 
 

We did not indicate above the equation of which the 
Green's functions presented are solutions, because 
we used the most general properties of the Green's 
functions. This equation can be a parabolic equation 
as well as the Helmholtz equation. 

In a real situation the condition that the medium 
be ''frozen" cannot always satisfied, so that we shall 
analyze the possibility of phase correction for a differ-
ent limiting case, when cor p nl. We shall perform 
this analysis in the aberration-free approximation. 

The dimensionless beam width g(z) for nonlin-
earities of any type satisfies in the aberration-free 
approximation the equation 
 

 (4) 
 

Here and below z is scaled to the refraction length: 
 

 

 
 

where  is the perturbation of the dielectric con-
stant, whose functional dependence on the intensity 
is determined by the type of nonlinearity; 
 = (LR/LD)2 where LD is the refraction length, 

2 2
0 0/ 1 ( / ) ,D cL ka a a    ac is the coherence ra-

dius of the radiation, and ac is the beam radius in 
the plane z = 0. 

Let the nonlinearity of the medium be of the 
wind type. We shall assume that the strength of the 
nonlinear refraction decreases exponentially as a 
function of z in the layer. In other words, we shall 
perform phase correction with 
 

 (5) 
 

where zs is the effective thickness of the nonlinear 
layer. 

We shall study the case of adaptive control of 
the wavefront. At each moment in time a phase front 
that is conjugated with respect to the wavefront ar-
riving at the point of reception is formed on the ra-
diating aperture. Since cor p nl the correction of 
the phase front lags behind the changes in the dis-
tribution of the dielectric constant in the layer of 
nonlinear medium, and therefore the adaptive-
control process is of an iterative character.7  
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We shall model this adaptive control using the 
following scheme. From the initial plane the colli-
mated beam with width g = 1 propagates through 
the nonlinear medium up to the exit boundary of the 
medium, and the dielectric-constant distribution cre-
ated after the passage of the beam is remembered. A 
plane wave propagating to the initial plane with a 
fixed distribution of the dielectric constant is given 
at the exit boundary. This wave arrives, after passing 
through the nonlinear medium, in the initial plane 
with some phase front. Here a front that is the phase-
conjugate of the arrived front is created. Next, the 
beam with g = 1 and the created phase-conjugated  

front propagates through the nonlinear medium to 
the exit boundary of the medium and once again the 
dielectric-constant distribution created after the pas-
sage of the new beam is fixed, and so on.  

The angular divergence of the beam in the far 
zone (in what follows, the angular divergence) is 
calculated at the exit boundary of the layer based on 
the obtained beam width and curvature of the phase 
front of the beam: 
 

 
 

 

 
 

FIG. 1. The angular divergence versus the number of iterations N for several values of  ( = (LR/LD)2): 
 = 0.5 (1), 0.05(2), 0.01(3), 0.001 (4), and 0.0001 (5); zc = 0.4 (a) and 0.5 (b). 

 
Figure 1 shows the dependence of  on the num-

ber of iterations N; this dependence was obtained by 
numerical modeling of the adaptive control based on 
the proposed scheme. For zs = 0.4 (Fig. 1a) one can 
see that as the number of iterations increases  reaches 
a stationary level for each value of  presented. Two to 
five iterations are required to reach this level; in addi-
tion, more iterations are requited for lower values of . 

The calculation showed that the given station-
ary level is close (the difference does not exceed 
0.5%) to the minimum angular divergence achieved 
with optimal focusing of the beam.4 

We note that for zs < 0.4 the stationary level is 
already reached after one to three iterations, and 
once again more iterations are required for smaller 
values of . For zs = 0.5 (Fig. 1b) there is no sta-
tionary level for the angular divergence, and there-
fore the iteration scheme of the proposed adaptive 
control becomes unstable. As the number of itera-
tions increases we obtain a minimum in the depend-
ence of  on the number of iterations; beyond this 
minimum  increases. It should be noted that the 
obtained minimum gives an angular divergence that 
is close to minimum, as before. This picture is also 
observed for zs > 0.5, and in this case the minimum 
is sharper. Therefore, at some number of iterations, 
for zs  0.5, this system results in lower efficiency of 

radiation transfer so that in order for the proposed 
scheme of adaptive control to work additional moni-
toring of the achievement of minimum angular diver-
gence or, which is equivalent, achievement of maxi-
mum intensity at the point of reception is necessary. 

For this reason we shall now consider a differ-
ent type of phase correction, namely, programmed 
phase correction. 

In programmed correction the method for intro-
ducing into the phase of the radiation a correcting 
predistortion calculated, for example, from the for-
mula 
 

 
 

where k = 2/ is the wave number, is well known 
and widely employed.2,6,8,9 

Figure 2 shows the dependence of  on the effec-
tive thickness of the nonlinear layer. Given the predis-
tortion k makes it possible to achieve close to the 
minimum value of  only up to zs  0.7–0.8, and al-
ready for zs  1 the angular divergence of the focused 
beam becomes greater than or comparable to the angu-
lar divergence of a collimated beam, i.e., for zs > 1 
such phase correction results in lower efficiency of 
radiation transfer. 
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FIG. 2. The angular divergence  versus the effective thickness of the nonlinear layer zs for optimally fo-
cused (solid curve) and collimated (dot-dashed curve) beams as well as for a beam with predistortion k 
(dashed curve) and a beam with phase correction determined by the programmed-phase-correction algorithm 
with a reference plane wave (dotted curve). 

 
Thus the computational results based on the 

proposed scheme of adaptive correction can be com-
pared with the calculations of the programmed phase 
correction (PPC) with predistortion k. One can see 
that both methods make it possible to determine 
angular divergence close to the minimum only in a 
limited region of zs. In addition, for zs = 4 (for ex-
ample, for  = 0.0001) the proposed adaptive correc-
tion gives a value of  that is 23 times smaller than 
for a collimated beam; on the other hand, pro-
grammed correction with k gives a value of  that is 
only 6.5 times smaller than for a collimated beam. 

Comparing the angular divergences of the col-
limated and optimally focused beams one can see 
that the efficiency of energy transfer cam also be 
Increased for zs > 1. For this reason, we shall exam-
ine a different algorithm of programmed phase con-
trol, which, as the calculations showed, makes it 
possible to increase the efficiency of radiation trans-
fer through a layer of a nonlinear medium with a 
thickness of up to two refraction lengths. 

We studied above a scheme for adaptive con-
trol, the results of calculations based on which are 
presented in Fig. 1 and which permits finding the  
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distribution of the phase front in the source plane 
for which the angular divergence either reaches a 
stationary level or its minimum value. This distribu-
tion of the phase front is introduced as a correcting 
predistortion for the transmitted beam. The numeri-
cal modeling of this scheme can be regarded as an 
algorithm for programmed phase correction. 

The dashed curves in Fig. 2 show the calcula-
tion of the angular divergence based on such an al-
gorithm. It follows from the calculations that for zs 
 < 0.5 an angular divergence of not more than 0.5 
times greater them the minimum value is achieved. 
In addition, this excess also remains small for zs of 
the order of the refraction length ( 1%). The excess 
reaches about 4–5% only for zs  1.5. The algorithm 
determines a close to optimal phase distribution in 
the initial plane within one to three iterations for 
zs  0.4 and zs > 0.8; a large number of iterations is 
required only for zs  0.5 with   0.01. 

We also note that the smaller the value of  the 
more efficient the radiation transfer to the point of 
reception is. 
 

 
 

FIG. 3. The angular divergence  as a function of zs with 
nonlinearity of the wind type. f(z) is given by Eq. (6): 
collimated beam (dot-dashed curve), beam with predistor-
tion k (dashed curve), optimally focused beam (dotted 
curve); f(z) represented by Eq. (5): optimally focused beam 
(solid curve). 
 

Figure 3 shows results that are analogous to 
Fig. 2b for the case when f(z) is represented in the 
form 
 

 

 (6) 
 

From a comparison of the results presented in 
these figures it follows that replacing the exponen-
tially decreasing nonlinear refractive power in the 
layer by uniform refractive power with identical effec-
tive thickness of the layer results in appreciable errors. 

Thus it can be concluded that in the case 
cor p nl for the nonlinearity of the type (5) studied 
above programmed correction makes it possible to 
increase significantly (for zs = 0.4 by a factor of 23 
for  = 0.0001 and by a factor of 8 for  = 0.001) 
the efficiency of energy transfer as compared with 
the collimated beam. An algorithm for programmed 
phase control that permits calculating the angular 
divergence exceeding the minimum value by not more 
than 0.5–3% for zs  1.5 and by not more than 5% for 
zs of the order of two refraction lengths was proposed. 
For lower values of  phase correction makes it possi-
ble to obtain high efficiency of radiation transfer.  
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