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Some peculiarities of effective Hamiltonian reduction have been considered 
for the interacting vibrational states of nonrigid H2O-type molecules. It has been 
demonstrated that reduced forms of Hnm

red
 operators describing interaction between 

vibrational states (n) and (m) depend on the degree of excitation of vibrational 
quantum number v2 associated with the high-amplitude oscillations. 
 

1. INTRODUCTION 
 

Analyzing the vibration-rotation spectra of 
nonrigid H2O-type molecules, we have revealed the 
following peculiarities: 1) effective rotational 
Hamiltonian of isolated vibrational state expressed as a 
series in the angular momentum operators is a divergent 
series, 2) the factors (spectroscopic parameters) at the 
powers of operator Jz (z is the axis of a molecule 
linearization, along which the inertia tensor is 
minimum) change significantly with the excitation of 
quantum number v2 connected with high-amplitude 
oscillations. Theoretically these peculiarities have 
already been considered in Refs. 1$3.  

It is natural to assume that these peculiarities 
influence the form of the effective Hamiltonian written 
for the group of resonating vibration states. Let  us 
consider the example of Fermi resonance when two 
vibrational states (1) = (1, 0, 0) and (2) = (0, 2, 0) 
(here (v1, v2, v3) is vibrational state and vi are 
vibrational quantum numbers) of the same symmetry type 
are interacting.  The effective Hamiltonian for the pair of 
the above-written states has the form of the 2×2 matrix 

 

H = 
⎣
⎢
⎡

⎦
⎥
⎤H11 H12

  
H21 H22

 , (1.1) 

 

with the diagonal operators Hnn of the following form: 
 

Hnn = H
(n)
0  + ∑

p,q,r

 h(n)
pqr J

2q{J2p
+  (Jz + p)2r

 + (Jz + p)2r
 J

2p
$ },  

  (1.2) 
 

where p + q + r = 2, 3, ..., and 
 

H
(n)
0  = En + A(n) J2

z + B(n) J2 + C(n) (J2
+ + J2

$) (1.3) 
 

(n = 1, 2) 
is the operator of the zero-order approximation. The 
operator H12 that describes the interaction of 
vibrational states with the accuracy up to J3 (to the 
terms containing the third power of angular momentum 
operators) can be written in the form4 

H12 = F0 + F020 J
2 + F002 J

2
z + F200 (J

2
+ + J2

$) + 

+ F201 {J
2
+ (Jz + 1) $ (Jz + 1) J2

$}. (1.4.) 
 

Hamiltonian H
∼

 transformed by rotation contact 
transformation (CT) has the form 

 

H
∼

 = eiS H e$iS = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤H

∼
11  H

∼
12

  

H
∼

21 H
∼

22

 . (1.5) 

 

In this formula the generator of the transformation S 

also has the form of the two-dimensional matrix 
 

S = 
⎣
⎢
⎡

⎦
⎥
⎤S11 S12

  
S21 S22

 . (1.6) 

 

Operators H
∼
nm entering into Eq.(1.5) satisfy the 

following relations4,5,8: 
 

H
∼
nn = Hnn + [iSnn, Hnn] + i (Snm Hmn $ Hnm Smn) + ... ,  

  (1.7) 

H
∼

12 = H12 + i (S11 H12 $ H12 S22) + 
 

+ i (S12 H22 $ H11 S12) + ... , (1.8) 
 

n, m = 1, 2. 
 

Generators of transformation Snn convert Hnn to the 
reduced form Hred

 obtained by Watson6 for the isolated 
vibrational state. Operators Hnm are called the reduced 
operators if the parameters of transformation 
(parameters of S generators) for these operators are 
chosen in a definite  way.  For example, the main 
generator Snn has the form 

 

iSnn = ε(n)
21  {J2

+ (Jz + 1) $ (Jz + 1) J2
$}, (1.9) 

 

with the parameter ε(n)
21  being chosen from the condition 

 

h
∼(n)

200 = h(n)
200 + 2 ε(n)

21  C(n) = 0. (1.10) 
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This condition permits one to eliminate the summand  

h
∼(n)

200 (J 

4
+ + J 

4
$) from operator H

∼
nn and to transform  

H
∼
nn expanded up to terms J4 to the reduced form mred

nn , 
in the basis ⏐J, K > of rotational wave functions of a 
symmetric top. The reduced operator has matrix 

elements < J, K⏐m
red
nn  ⏐ J, K + ΔK > only with 

ΔK = 0, ± 2 (a three-diagonal form of the effective 
Hamiltonian in the absence of random resonance).  

As stated above, for some nonrigid molecules the 
considerable change of spectroscopic parameters at the 
powers of operator Jz is a characteristic feature of 
excitation of quantum number v2.  As a consequence, 

`
(1) ≠ `(2) even in a zero-order approximation (for 

example, as in the case7 of H2O).  From this condition 
it follows that  the second summand must be taken into 

account in the term m22$m11=(e 2$e 1) + (`(2)$ 

$ `
(1)) J

2
z+... of Eq. (1.8).  By introducing the 

designation  
 

H
(±)
0  = {H(1)

0  ± H(2)
0 }/2, (1.11) 

 

we can write Eq. (1.8) in the form 

H
∼

12 = H12 + [iS12, H
(+)
0 ] + {iS12, H

($)
0 } + 

 

+ [iS, H12] + ... . (1.12) 
 

In this equation it has been considered that ε(1)
12  ≅ ε(2)

12 , 

so that S11 ≅ S22 ≅ S (parameters ε(n)
12  determined from 

Eq. (1.10) are expressed through the parameters h
(n)
200 

and C(n) which depend weakly on n). Equation (1.12) 
differs from the analogous one used for semirigid 
molecules by the presence of anticommutator 

{iS12, H
($)
0 } (see, for example, Refs. 4 and 5). The first-

order generator of transformation iS12 has the form4 

 

iS12 = γ20 (J
2
+ + J2

$) + ... . (1.13) 

Disregarding in expression for H
∼

12 the summand 

[iS, H12] which does not change the form of H
∼

12 and 
describes the contribution of higher orders, we find that  

H
∼

12 = F0 + F020 J
2

 + F002 J
2
z + F

∼
200 (J2

+ + J
2
$) + 

 

+ F
∼

201 {J2
+ (Jz + 1) $ (Jz + 1) J2

$} +  
 

+ 2 γ20 A
($)
12  {J2

+ (Jz + 1)2 + (Jz + 1)2 J2
$} + ... . (1.14) 

 

In this expression 
 

F
∼

200 = F200 + {(E2 $ E1) + 2 A($)
12 } γ20, (1.15) 

F
∼

201 = F201 $ 4 A(+)
12  γ20, (1.16) 

 

and A(±)
12  are defined from the equation 

 

A
(±)
12  = (A(1) ± A(2))/2. 

 

Choosing the parameter γ20 = F201/4 A(+)
12 , we can 

eliminate the term containing parameter F
∼

201 from the 

operator H
∼

12  and in such a way transform it to the 

reduced form m
red
12 . However, the summand  

 

ΔH12 = 2 γ20 A
($)
12  {J2

+ (Jz + 1)2 + (Jz + 1)2 J2
$}, 

 

remains in m
red
12 . This  summand is absent in the 

approximation of such order for the model of semirigid 

molecules for which it is assumed that A($)
12  = 0.  Let us 

consider in more detail some peculiarities of accounting 
for the effects of nonrigidness in the procedure of 
reduction of the Hamiltonian H given by Eq. (1.1). 
 

2. FERMI PAIRWISE INTERACTION IN 

NONRIGID H2O-TYPE MOLECULES 
 

Let us consider again the effective Hamiltonian H 
given by Eq. (1.1) for the pair of interacting 
vibrational states (1) = (1, 0, 0) and (2) = (0, 2, 0) 
having the same symmetry type.  The account of strong 
vibration-rotation interaction is the cause of 
nonpolynomial character of dependence of zero 
approximation on operator Jz (see, for example, 
Refs. 3, 9, and 10)  

 

H
(0)
n  = En + hn(Jz) + B(n) J2 + C(n) (J2

+ + J2
$). (2.1) 

 

Particularly, the operator hn(Jz) can be expressed in 
the form9,10 

 

hn(Jz) = A(n) Gn(Jz), (2.2) 
 

where `(n)is rotation constant as in Eq. (1.3), 
 

 

Gn(Jz) = 2/α(n) ( 1 + α(n) J2
z $ 1), (2.3) 

 

 

and α(n) is a certain constant dependent on J. 
Employing the properties of symmetry of a molecule we 
can write the diagonal operators Hnn in the form 
 

Hnn = H(0)
n  + ∑

(p+q+r > 1)

 J2q {J2p
+  (Jz + p)2r h(n)

pqr + 

 

+ h(n)
pqr (Jz + p)2r J2p

$ }, (2.4.) 
 

where h
(n)
pqr are some functions dependent on Jz.  We 

can assume7 that the coefficients b
(n) and q

(n) in 

Eq. (2.1) are independent of n, i.e., b
(n) = b and 

q
(n) = q .  According to Refs. 5 and 8 the operator of 

interaction can be written as 
 

H12 = ∑
l,k,m

 J2l {J2k
+  (Jz + k)m F2k2lm + 

 

+ ($ 1)m F2k2lm (Jz + k)m J2k
$ }. (2.5) 

 

In contrast with Refs. 5 and 8, here F2k2lm are some 
functions of operator Jz. Let us introduce a small 

parameter λ = 2(B
$
/ω$)1/2 in the same way as for 

ordinary molecules (B
$
 is the mean rotational constant, 

ω$ is the mean frequency of harmonic oscillations). For 

H2O molecule λ ∼ 1/10. The order of terms Cq
i
J
j in  
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expansion of initial Hamiltonian is determined as λi+j$2 
(here C is an arbitrary spectroscopic constant, i is a 
common power of rotational operators q, and j is a 
common power of vibrational operators J); therefore, 

λj+1 is the order of terms in Eq. (2.2) for Fermi 

resonance formed by operators C q1 q
2
2 J

j. Such 
definition is valid for rotation quantum numbers 
J ∼ 10. Some exceptions exist in definition of the 

operator orders because the parameters at operators J2k
z  

are, as a rule, by an order of magnitude greater than 

the parameters at operators J
2k and J

2k
±

. The 

spectroscopic parameters of the H2O molecule of the 
first three orders are presented in Table I. These 
parameters were calculated from the potential field of a 
molecule as well as obtained by processing of an 
experimental spectrum. It is seen from the table that, 

for example, summands F0 and F002 J
2
z are of the same 

order. The first-order operator of interaction m12 has 
the form 

 

H12 = F0 + F002 J
2
z +                        (∼λ2) 

 

+ F020 J
2 + [J2

+ F200 + F200 J
2
$] + ... ,  (∼λ3) (2.6) 

 

where F0 = F000. 
 
TABLE I.  Values of the effective Hamiltonian 

parameters of the first three resonating vibrational 

states of the H2O molecule.   

Vibrational centers E
n
 and rotational constants A(n) (Ref. 7)

State (1) = (1, 0, 0) (2) = (0, 2, 0) (3) = (0, 0, 1)

e, “m
$1

 3652.5 3156.2 3755.9 

`, “m
$1

 15.4 23.7 14.9 

 Calculated parameters of interaction13 (in cm-1) 

F0 = 45 F002 = $0.2 

q
(1)
10  = 1 q

(1)
11  = 0.3 

q
(2)
10 = 0.4  

Note:  The term13 < Ψn(ρ)|B
zz
1 (ρ)| Ψm(ρ) > / 2 was 

used to estimate F002. 
 

In the operator H
∼

12 given by Eq. (1.8) we can 
disregard the contribution of the commutator 
[iSnn, H12], which does not change the form of this 

operator. When calculating H
∼

12, we use the following 
properties of the zero-order approximation: 

 

H
(n)
0  (Jz ± k) = H(n)

0 (Jz) ± k f(n)(Jz) (2 Jz ± k); (2.7) 
 

[Jk+, h
(+)
nm ] = $ k Jk+ (2 Jz + k) f(+)

nm , (2.8) 
 

{Jk+, h
($)
nm } = 2 A($)

nm  Jk+ G (Jz + k/2). (2.9) 
 

In these formulas k is an arbitrary integer; 
 

fn(Jz) = A(n)/G
(n)
1  = A(n)/(1 + α(n) J2

z)
1/2, (2.10) 

 

f
(±)
nm = A(±)

nm/G1, 
 

 

A
(±)
nm = (A(n) ± A(m))/2, α(±)

nm = (α(n) ± α(m))/2, 
 

G1 = (1 + α J2
z)

1/2,   G = (2/α) (G1 $ 1). (2.11) 
 

Consequently `(+) and α = α(+) are some mean values 
of A and α for two vibrational states. The first-order 
generators of transformation iS12 have the form 

 

iS12 = (J2
+ γ20 + γ20 J

2
$) +   (∼λ3) 

+ [J2
+ (Jz + 1) γ21 $ γ21 (Jz + 1) J2

$] +  (∼λ4) 
 

+ (J4
+ γ40 + γ40 J

4
$) + [J2

+ (Jz+ 1)2
 γ22 + 

+ γ22 (Jz+ 1)2
 J

2
$] + ... (∼λ5)  

  (2.12) 
 

The summands from iS12, which commute with 
hn(Jz), are disregarded here. Let us consider the form 

of the operator (k)
m

red
12  reduced to λ2k. This operator is 

obtained from Eq. (1.8) with subsequent fixing of the γ 
parameter. The operator (1)

m
red
12  reduced by rotation 

contact transformation (CT) to λ2 has the form 
 

(1)
H

red
12  = (1)H

∼
12 = F0 + F002 J

2
z. (2.13) 

 

The operator reduced to λ4 is 
 
(2)

H
red
12  = F0 + F002 J

2
z + F020 J

2
 + {J2

+ Ψ(2)
2  (Jz + 1) +  

 

+ Ψ(2)
2  (Jz + 1) J

2
$}, (2.14) 

 
where 

Ψ(2)
2  (Jz + 1) = F

∼
200 + 2 γ20 A

($)
12  G (Jz + 1), (2.15) 

 

and parameter F
∼

200 is defined by relation (1.15). As 
earlier, the function γ20 is chosen to eliminate the 
summand containing F201, i.e., 
 

γ20 = F201/4 f (+)
12 . 

 

The operator (3)
m

red
12  reduced with the accuracy up 

to λ6 can be written as 
 

(3)
H

red
12  = (3)

H
red
12,1 + Δ(3)

H12. (2.16) 
 

Here 
 

(3)
H

red
12,1 = ∑

i+j=0

2

 F02i2j J
2i J2j

z  + {J2
+ Ψ

(3)
2  (Jz + 1) +  

+ Ψ(3)
2  (Jz + 1) J2

$}, (2.17) 
 

Δ(3)
H12 = 2 A

($)
12  [J4

+ γ40 G (Jz + 2) + γ40 G (Jz + 2) J
4
$],  

  (2.18) 

Ψ(3)
2  (Jz + 1) = Ψ(2)

2  (Jz + 1) + F
∼

202 (Jz + 1)2 + 
 

+ 2 A($)
12  γ22 (Jz + 1)2 G (Jz + 1), (2.19) 

F
∼

202 = F202 $ 4 γ21 f 
(+)
12  + γ22 (E2 $ E1). 

 

In the generator iS12 given by Eq. (2.12) the functions 
γ21, γ40, and γ22 are chosen to eliminate from the 

transformed operator (3)
m

red
12  terms containing F

∼
400,  
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F
∼

401, and F
∼

203. This process can be continued up to 

higher orders of λ2k. In any case, the operator (k)
m

red
12  

can be reduced to the form 
 

(k)
H

red
12  = (k)Hred

12,1 + Δ(k)
H12, (2.20) 

 

where 

(k)
H

red
12,1 = ∑

i+j=0

 F
∼

02i2j J
2i

 J
2j

 + {J2
+ Ψ

(k)
2  (Jz + 1) + 

+ Ψ(k)
2  (Jz + 1) J2

$}, (2.21) 
 

and the concrete form of operators Ψ(k)
2  and Δ(k)

m12 
depends on the value of k. It is evident however that 

beginning from k = 3 (i.e., from λ6) the operator 
(k)

m
red
12  contains the terms Δ(k)

m12. These terms in the 
basis of rotational wave functions ⏐J, K >  have matrix 
elements with Δj  = ± 4, ± 6, ... and are absent in the 

case of semirigid molecules. If `
($)
12  = 0, the results 

coincide with that presented in Refs. 4 and 8, i.e., for 

any order of the perturbation theory m
red
12  can be 

reduced to the form that in the basis ⏐J, K > has 
matrix elements only with Δj  = 0, ± 2. 

 

3. PAIRWISE INTERACTION IN NONRIGID H2O-

TYPE MOLECULES IN THE CASE OF CORIOLIS 

RESONANCE 

  

Let us consider now the interaction of states 
(1) = (1, 0, 0) or (2) = (0, 2, 0) and 3 = (0, 0, 1) that 
have different types of symmetry.  In the case of 
pairwise interaction, effective Hamiltonian H of a 
molecule still has the form  given by Eq. (1.1). The 
operators mnn are set by Eq. (2.4) and operators of 
interaction mn3 (n = 1, 2) are set by the equation5,8,11 

 

Hn3 = ∑
k,j,l

 {J2k+1
+  J2l C(n)

2k+1jl (2 Jz + 2k + 1) 
j + 

+ ($ 1) 
j+1 HC}, (3.1) 

 

where HC means Hermitian conjugate part. When only 
first orders of expansion of operator mn3 in a small 
parameter λ are considered, this operator can be written 
in the form 
 

Hn3 = (J+ C
(n)
10  $ C(n)

10  J$) + {J+ (2 Jz + 1) C(n)
11  + 

+ C(n)
11  (2 Jz + 1) J$} + ... . (∼λ) or (∼λ2) (3.2) 

 

The designation q
(n)
ij  = q (n)

ijl=0 is introduced in Eq. 

(3.2). Parameters q
(n)
2k+1jl are some functions of the 

operator Jz.  It is seen from the table that the first two 
terms of mn3 are of the same order and we will keep  
this order for n = 1, 2. Operator mn3 written up to 

orders λ2 contains two summands, up to λ3 - four, up to 

λ4 - eight, etc. Similarly to the case of Fermi 
interaction considered in the previous section, let us 

consider the operator of interaction H
∼
n3 only, 

disregarding the contribution of the last summand in 
the transformed operator  

 

H
∼
n3 = Hn3 + [iSn3, H

(+)
0 ] + {iSn3, H

($)
0 } + [iSnn, Hn3] + ...  

  (3.3) 
 

assuming that this summand does not change the form 

of H
∼
n3.  Starting from Eq. (3.1), we can obtain the 

generator of rotation contact interaction iSn3 in the 
general form8,11 

 

iSn3 = ∑
k,l,j

 {J2k+1
+  J2l β(n)

2k+1jl (2 Jz + 2k + 1) 
j
 + 

 

+ ($ 1) 
j+1HC}. (3.4) 

 

In the first-order approximation formula (3.4) has the 
form 

 

iSn3 = (J+ β
(n)
10  $ β(n)

10  J$) + (∼λ)
(3.5) 

+ [J+ (2 Jz +1) β(n)
11  $ β(n)

11  (2 Jz +1) J$] + ... (∼λ2).  
 

Designation β(n)
ij  = β(n)

ijl=0 is introduced here. Let us 

consider the form of the operator (k)mn3 transformed up 

to orders λ2k. The operator (1)
mn3 transformed up to 

orders λ2 (k = 1) has the form 
 

(1)
H
∼
n3 = (1)H

∼
n3,1 + Δ 

(1)
Hn3 , (3.6) 

 

where 
 

(1)
H
∼
n3,1 = (J+ C

∼ (n)
10  $ C

∼ (n)
10  J$) + [J+ (2 Jz +1) C

∼ (n)
11  + 

 

+ C
∼ (n)

11  (2 Jz +1) J$], (3.7) 
 

Δ 
(1)

Hn3 = 2 A
($)
n3  [J+ G (Jz +1/2) β(n)

10  $  
 

$ β(n)
10  G (Jz +1/2) J$]. (3.8) 

 

Parameters C
~

10
(n) and C

~
11
(n) are set by formulas 

 

C
∼ (n)

10  = C(n)
10  + β(n)

10  (E3 $ En), (3.9) 

C
∼ (n)

11  = C(n)
10  + β(n)

10  (2 C $ f (+)
n3 ). (3.10) 

 

The independent parameters of (1)
H
∼
n3 for n = 1 

and n = 2 can be chosen in different ways, because 

when n = 1 the term Δ(1)
m13 can be neglected. In this 

case the parameter β(1)
10  can be chosen so that the term 

C
∼ (n)

10   vanishes, i.e., 
 

β(1)
10  = C(1)

10 /(E1 $ E3), (3.11) 
 

then 
 

(1)
H

red
13  = [J+ (2 Jz +1) C

∼ (n)
11  + C

∼ (n)
11  (2 Jz +1) J$]. (3.12) 

 

Such choice is not obligatory for the operator 
(1)

m23 and the parameter β(2)
10  can be chosen in different 

ways, i.e., unambiguously, because its choice depends 
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on the value of detuning `
($)
23 . For example, it can be 

chosen to eliminate the higher-order term C
∼ (2)

12 , where 
 

C
∼ (2)

12  = C12 $ β(2)
10  A($)

23 /2. (3.13) 
 

(Here we used the expansion of G function entering 
into Eq. (3.8) in a series in (Jz + 1/2).) In this case 

 

(1)
H

red
23  = (J+ C

∼ (2)
10  $ C

∼ (2)
10  J$) + {J+ (2 Jz +1) C

∼ (2)
11  +  

 

+ C
∼ (2)

11  (2 Jz +1) J$}. (3.14) 
 

However, it should be noted that such method is not 
unique.  Let us consider the transformation up to terms 

λ4.  In the same manner as in the case of (1)H
∼
n3 let   us 

represent the operator (2)
H
∼
n3 in the form given by 

Eq. (3.6), i.e., 
 

(2)
H
∼
n3 = (2)

H
∼
n3,1 + Δ 

(2)
H
∼
n3 . (3.15) 

 

In this representation (2)
H
∼
n3 is given by Eq. (3.2) and 

includes eight summands whose parameters C(n) are 

connected with five parameters of the generator β(n) of 
transformation (3.5). 

It is convenient to represent the operator Δ(2)
H
∼
n3 

as a sum of two terms 
 

Δ 
(2)

H
∼
n3 = Δ 

(2)
Hn3,1 + Δ 

(2)
Hn3,2 , (3.16) 

 

where 
 

Δ 
(2)

Hn3,1 = $ 2 A($)
3n  {[J+ β

(n)
10  G (Jz + 1/2) $ HC] + 

 

+ [J+ β
(n)
11  G (Jz + 1/2) (2 Jz + 1) + HC], (3.17) 

 

Δ 

(2)
Hn3,2 = $ 2 A

($)
3n  {[J+ β(n)

12  G(Jz+1/2) (2 Jz+1)2
 $ 

 

 

$ HC]  +J
2 [J+ β

(n)
102 G (Jz + 1/2) $HC] + 

 

 

+ [J3
+ β

(n)
30  G (Jz + 3/2) $ HC]}. (3.18) 

 

Such representation is convenient because  the first 

terms of the summand Δ(2)
H
∼
n3,1 in the expansion of G 

function in a Taylor series in powers (Jz + 1/2) allow 

us to convert the operator (2)
H
∼
n3 to the form 

 

(2)
H
∼
n3 = (2)

H
∼ ′n3,1 + Δ 

(2)
Hn3,2 , (3.19) 

 

with the operator (2)
H
∼ ′n3 still keeping the form given by 

Eq. (3.1). The connection of operator q
∼(n) parameters 

with parameters β(n) is considered in the next section. 

Reduced forms (2)
m

red
n3  depend on `

($)
n3 . When operator 

 

Δ(2)
mn3,2 given by Eq. (3.18) can be neglected, the eight 

parameters of (2)
H
∼
n3 will be related to five independent 

parameters β(n) entering into Eq. (3.5). As in the case of 
semirigid molecules, these parameters can be chosen so 
that in the basis ⏐J, K > the number of diagonals of 
(2)

m
red
n3  be minimum, i.e., matrix elements <J, K ⏐ 

(2)
m

red
n3

⏐J, K + ΔK > be nonzero only when ΔK = ± 1. As in the 

case of (1)
m

red
n3  operator, among the terms that include 

matrix elements with ΔK = ± 1 it is expedient to keep 
summands with powers Jz. Thus, one of the possible 

forms of the reduced operator (2)
m

red
n3  written up to λ4, 

for which `($)
n3  = 0, is 

 

(2)
H

red
n3  = {J+ (2 Jz + 1) C

∼ (n)
11 + HC} + 

 

+ {J+ (2Jz + 1)2
 C
∼ (n)

12  $ HC} + J
2{J+(2 Jz + 1) C

∼ (n)
112 + HC}.  

  (3.20) 
 

If we cannot neglect the operator Δ(2)
m

red
n3,2 (for example, 

for the H2O molecule when n = 2), the reduced operator 
(2)

m
red
n3  includes matrix elements with  ΔK = ±1, ±3 and 

many forms of (2)mred
n3  are acceptable. Let us consider now 

the transformation up to λ6. According to Ref. 11, the 
initial operator Hn3 given by Eq. (3.1) and written up to 
λ6 includes 18 summands and in the generator of 
transformation iSn3 the summands up to λ5 should be 
considered. There are 12 such summands. The transformed 

operator (3)
Hn3, can be written in the form given by 

Eq. (3.19), i.e., 
 

(3)
H
∼
n3 = (3)

H
∼ ′n3 + Δ 

(3)
Hn3,2 , (3.21) 

 

where (3)
H ′n3 has the form of the initial operator given 

by Eq. (3.1) and the operator Δ(3)
Hn3,2 has the form 

 

Δ 
(3)

Hn3,2 = 1/2 A($)
n3  {[J+ (β(n)

14  $ α(n) β(n)
12 /4) × 

 

 

× (2 Jz + 1)6 $ HC] + J2 [J+ (2 Jz + 1)4 × 
 

 

× (β(n)
122 $ α(n) β(n)

102/4) $ HC] + [J3
+ (2 Jz + 3)4 × 

 

 

× (β(n)
32  $ α(n)β(n)

30 /4) $ HC] + [J5
+ (2Jz + 5) β(n)

50  $ HC]}.  
  (3.22) 
 
with the accuracy up to the first terms of expansion of 

G functions.  If the operator Δ(3)
mn3,2 can be 

neglected, the operator (3)
H
∼
n3 still can be reduced to 

the form (3)
m

red
n3  which has matrix elements 

<J, K⏐(3)
m

red
n3 ⏐J, K + ΔK> only with ΔK = ± 1. It is 

obvious that (3)
m

red
n3  includes six summands [the first 

three can be defined, for example, by Eq. (3.20)]. If 

the operator Δ(3)
mn3,2 cannot be neglected, then the 

reduced operator (3)
m

red
n3  includes summands that have 

matrix elements with ΔK = ± 1, ± 3, ± 5. 
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4. APPLICATION TO THE FIRST TRIAD OF THE 

H2O MOLECULE 

 

Let us consider the application of the technique 
developed to the first triad of resonating vibrational 
states of the m2n  molecule. Three vibrational states  
(1) = (1, 0, 0), (2) = (0, 2, 0), and (3) = (0, 0, 1) 
form this group of states. Effective Hamiltonian of the 
first triad has the form of a matrix 

 

H = 
⎣
⎢
⎡

⎦
⎥
⎤H11 H12 H13

H22 H23

HC H33

 . (4.1) 

 

The operators mnm (n, m = 1, 2, 3) are defined by 
formulas (2.4), (2.5), and (3.1). 

The generator of transformation S entering into 
formula (1.5) also has the form of a matrix 
 

S = 
⎣
⎢
⎡

⎦
⎥
⎤S11 S12 S13

S22 S23

HC S33

 , (4.2) 

 

In this matrix Snm are defined by relations (1.9), 
(2.12), and (3.5) (to define Snm, only the main 
generator is used). When n = m, transformed operators 

H
∼
nm can be written in the form 

 

H
∼
nn = Hnn + i ∑

m=1

3

 (Snm Hmn $ Hnm Smn) + ...  (4.3) 

and when m ≠ n, 

H
∼
nm = Hnm + [iS, Hnm] + [iS, H

(+)
nm ] + {iSnm, H

($)
nm } + ... .  

  (4.4) 
 

Here iS = iSnn and n, m = 1, 2, 3. Thus, main 
distinctions of the proposed calculation technique from 
analogous one used for semirigid molecules are the 

following: 1) the zero-order approximation m0
n given by 

Eq. (2.1) has essentially nonpolynomial form, 2) due to 
the considerable difference between the values of 
rotational constants the anticommutator enters into 
formula (4.4) for operators of interaction. Let us 
consider the form of transformed (or reduced) operators 

of interaction (k)
H

red
nm obtained for different orders of a 

small parameter λ. 

Transformation up to λ
2. Operators  

(1)
H
∼

12 = (1)mred
12  and (1)

H
∼
n3 (n = 1, 2)  are defined by 

formulas (2.13) and (3.6), respectively. Formulas 
(3.12) and (3.14) can be taken as examples of reduced 

forms of (1)
m

red
13  and(1)

m
red
23 . With the exception of the 

zero-order approximation, reduced diagonal operators 
have the form6 

 

H
red
nn  = H(0)

n  + h
∼(n)

020 J
4 + h

∼(n)
002 J

4
z + h

∼(n)
011 J

2 J2
z  +   

 

+ J
2 (J2

+ h
∼(n)

110 +  h
∼(n)

110 J
2
$) + [J2

+ (Jz + 1)2 h
∼(n)

101 + 
 

+ h
∼(n)

101 (Jz + 1)2 J2
$]. (4.5) 

 

In this formula, parameters h
∼(n) are connected with the 

parameter ε(n)
21  by the same relations as in the case of 

semirigid molecules, with the exception of the 
parameter 

 

h
∼(n)

101 = h(n)
101 $ 4 ε(n)

21  fn(Jz). (4.6) 
 
It can be shown (see, for example, Ref. 12) that for an 
isolated vibrational state in the basis of rotational 
functions of symmetric top the effective vibrational 
Hamiltonian always can be reduced to the three-
diagonal symmetric form. This means that operators 

m
red
nn  of any order can be reduced to the form m

red
nn . In 

the basis ⏐J, K> of the wave functions, this form has 

the matrix elements <J, K⏐m
red
nn ⏐J, K + ΔK>  only with 

ΔK = 0 or ΔK = ± 2. After formal substitution 

J
2
z ⇒ G + αG

2/4 performed in this operator, operators 

m
red
nn  can be written as 

 

H
red
nn  = ∑

i,j

 g(n)
ij  J2i Gj

n + 

+ ∑
i,j

 u(n)
ij  J2i [J2

+ G
j
n (Jz + 1) + Gj

n (Jz + 1) J2
$], (4.7) 

 

where, for example, g
(n)
00  = En, g

(n)
01  = A(n), ... . The 

connection of parameters α, gij, and uij with initial 
parameters was considered by Tyuterev and 
Starikov.9,10 In what follows we consider only the form 
of operators that describe the resonance interaction. 

Transformation up to λ4. The operator (2)
m

red
12  

which describes the Fermi resonance has the form of 
Eq.(2.14), i.e., 

(2)
H

red
12  = F0 + F002 J

2
z + F

∼
020 J

2 + 

+ {J2
+ Ψ

(2)
2  (Jz + 1) + Ψ(2)

2  (Jz + 1) J2
$}, 

where 

F
∼

020 = F020 $ β(1)
10  C(2)

10  $ β(2)
10  C(1)

10 , 

Ψ(2)
2  (Jz + 1) = F

∼
200 + 2 γ20 A

($)
12  G (Jz + 1) $ 

 

$ 2 ε21 F002 (Jz + 1)2, 

F
∼

200 = F200 $ β(1)
10  (C(2)

10  + C(2)
11 ) + β(2)

10  (C(1)
10  + C(1)

11 ) + 

+ {(E2 $ E1) + 2 A($)
12 } γ20 . (4.8) 

 

Parameter γ20  is chosen so that F
∼

201 = 0, where 
 

F
∼

201 = F201 $ 4 γ20 f 
(+)
12  $ 2 [β(1)

10  C(2)
11  + β(2)

10  C(1)
11 ] . 

  (4.9) 
 

Let us represent the operators (2)
mn3 in the form 

given by Eq. (3.19). Parameters q ijl of the operator 
(2)

m′n3,1 and initial parameters are related by the 
following expressions: 
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C
∼ (n)

10  = C(n)
10  + β(n)

10  (E3 $ En) $ β(n′)
10  F0 , 

 

C
∼ (n)

11  = C
(n)
11  $ β(n′)

10 F002 + β(n)
10 (2C $ f 

(+)
n3 ) + β(n)

11 (E3 $ En), 
 

C
∼ (n)

30  = C
(n)
30  + ε21C

(n)
10  + γ20C

(n′)
10  + 4β(n)

11 C + β(n)
30  (E3 $ En), 

 

C
∼ (n)

12  = C
(n)
12  $ 5ε21/4C(n)

10  + [γ20 C
(n′)
10  $ 2 β(n′)

10  F002]/8 + 
 

+ β(n)
11  (3 C $ f (+)

n3 ) + β(n)
12  (E3 $ En) $ 1/2 β(n)

10  A($)
3n , 

 

C
∼ (n)

31  = C(n)
31  $ 3 β(n)

30  f (+)
n3  + 4 β(n)

12  C, 
 

C
∼ (n)

13  = C(n)
13  $ β(n)

12  f (+)
n3  $ 1/2 β(n)

11  A($)
3n , 

 

C
∼ (n)

102 = C
(n)
102 $ β(n′)

10 F020 + ε21C
(n)
10  + β(n)

102(E3 $ En) + 4β(n)
11  C, 

 

C
∼ (n)

112 = C(n)
112 + β102 (2 C $ f (+)

n3 ). (4.10) 
 
Here n′, n = 1, 2 and n′ ≠ n.  The possible reduced 

forms of (2)
m

red
n3  operators have been considered in the 

previous section. In operators (2)
m

red
23  there appear the 

summands with ΔK = ± 3. According to Section 3, the 
summands that in the basis ⏐J, K > have matrix 
elements with ΔK = ± 4 appear in Fermi blocks of the  

Hamiltonian reduced up to λ6 and they have elements 

with ΔK = ± 3, ± 5 in mred
23  blocks. It should be noted 

that additional purely vibrational transformation can be 
applied to operator H to eliminate one more parameter 

from mred
12  block.4 

 
5. CONCLUSION 

 
In the present article it has been shown that the 

reduced forms of interaction operators m
red
nm (n ≠ m) 

depend on multiplicity of excitation of vibration 
quantum number v2 in states (n) and (m). This 
quantum number is associated with high-amplitude 
oscillations. Due to large difference between the 
degrees of excitation of this quantum number in (n) 

and (m) states, operators mred
nm in the basis ⏐J, K> of 

rotational wave functions have matrix elements 

<J, K⏐m
red
nm⏐ J, K + ΔK> with ΔK = 0, ± 2, ± 4, ... in  

 
 

blocks describing Fermi interaction, and matrix 
elements with ΔK = ± 1, ± 3, ± 5, ... in blocks 
describing the interaction of Coriolis type. The results 
of application of concrete models of effective 
Hamiltonian to interpretation of experimental data on 

the H2O molecule will be presented in the next paper. 

 
ACKNOWLEDGMENT 

 

This work was supported in part by International 
Science Foundation Grant NY300.  

 
REFERENCES 

 

1. V.I. Starikov, B.N. Machancheev, and 
Vl.G. Tyuterev, J.Phys. Lett. 45, 11$15 (1984).  
2. V.I. Starikov and Vl.G. Tyuterev, J. Mol. Spectr. 
95, 288$296 (1982). 
3. V.I. Starikov and Vl.G. Tyuterev, Opt. Spektrosk. 
63, No. 1, 75$79 (1987). 
4. V.I. Perevalov and Vl.G. Tyuterev, Izv. Vyssh. 
Uchebn. Zaved. SSSR, Ser. Fizika, No. 2, 108$112 
(1982). 
5. V.I. Perevalov and Vl.G. Tyuterev, J. Mol. Spectr. 
96, 56$76 (1982). 
6. J.K.G. Watson, J. Chem. Phys. 46, 1935$1949 
(1967). 
7. J.M. Flaud and C. Camy-Peyret, J. Mol. Spectr. 51, 
142$150 (1974). 
8. V.I. Perevalov and Vl.G. Tyuterev, œCentrifugal 

distortion under the random resonances in molecules,B 
Preprint No. 30, Institute of Atmospheric Optics of the 
SB of the RAS,  Tomsk (1979), 60 pp. 
9. Vl.G. Tyuterev, J. Mol. Spectr. 151, 97-129 (1992). 
10. V.I. Starikov, S.A. Tashkun, and Vl.G. Tyuterev, 
J. Mol. Spectr. 151, 130$147 (1992). 
11. V.I. Perevalov and Vl.G. Tyuterev, Opt. 
Spektrosk. 52, No. 4, 644$650 (1982). 
12. Vl.G. Tyuterev, V.I. Starikov, and V.I. Tolmachev, 
Dokl. Akad. Nauk SSSR 297, 345$349 (1987). 
13. V.I. Starikov and S.N. Mikhailenko, Atm. Opt. 4, 
No. 6, 424$429 (1991). 

 
 


