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Some peculiarities of effective Hamiltonian reduction have been considered
for the interacting vibrational states of nonrigid HyO-type molecules. It has been
demonstrated that reduced forms of HJS operators describing interaction between
vibrational states (n) and (m) depend on the degree of excitation of vibrational
quantum number v, associated with the high-amplitude oscillations.

1. INTRODUCTION

Analyzing the vibration-rotation spectra of
nonrigid H,yO-type molecules, we have revealed the
following  peculiarities: 1)  effective  rotational
Hamiltonian of isolated vibrational state expressed as a
series in the angular momentum operators is a divergent
series, 2) the factors (spectroscopic parameters) at the
powers of operator J, (z is the axis of a molecule
linearization, along which the inertia tensor is
minimum) change significantly with the excitation of
quantum number v, connected with high-amplitude
oscillations. Theoretically these peculiarities have
already been considered in Refs. 1-3.

It is natural to assume that these peculiarities
influence the form of the effective Hamiltonian written
for the group of resonating vibration states. Let us
consider the example of Fermi resonance when two
vibrational states (1) =(1,0,0) and (2)=1(0, 2, 0)
(here (v, vy, v3) is vibrational state and wo; are
vibrational quantum numbers) of the same symmetry type
are interacting. The effective Hamiltonian for the pair of
the above-written states has the form of the 2x2 matrix

|:H11 H12:|
Hjyy Hy)

with the diagonal operators H,,, of the following form:

H,,=H{"+ ¥ W50 P93 (1, +p)7 + (T, +p) P T,
P.ar
(1.2)

where p + g+ r=2, 3, ..., and

H(()n) -E, +A(n) ]3 . B(n) ]2 4 C(n) (]3_ +]%)

(n=1,2)

is the operator of the zero-order approximation. The
operator Hj; that describes the interaction of
vibrational states with the accuracy up to J3 (to the
terms containing the third power of angular momentum
operators) can be written in the form4

(1.3)

0235-6880,/96,/01 67-07 $02.00

©

Hiyy = Fo+ Foy J* + Fopy J2 + Fagg (J3 + J2) +

+ Fooy U3 U, + 1) = (1, + 1) J2. (1.4.)

Hamiltonian H transformed by rotation contact
transformation (CT) has the form

~ i i Hyy Hyy
H=e¢"He ™ = (1.5)
Hyy Hyy

In this formula the generator of the transformation .S
also has the form of the two-dimensional matrix

S11 512
S = .
So1 S

Operators H,,, entering into Eq.(1.5)
following relations?5.8:

(1.6)

satisfy the

Hnn = Hnn + [257171’ Hﬂﬂ] + 1 (Sﬂﬂl Hﬂln - Hn]n S?nﬂ) + Tt

1.7)
Hyy=Hyy+i(Syy Hyy = Hyy Spp) +
+i (S Hpp = Hyy S1p) + ..

n,m=1, 2.

(1.8)

Generators of transformation S, convert H,, to the
reduced form Hred obtained by WatsonS for the isolated
vibrational state. Operators H,,, are called the reduced
operators if the parameters of transformation
(parameters of S generators) for these operators are
chosen in a definite way. For example, the main
generator S, has the form

: _ . 52 2
157171_821 {]+ (]Z+1)_(]2+1) .]7}, (19)

with the parameter 85711) being chosen from the condition

RSio = hSgy + 2 57 € =0, (1.10)
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This condition permits one to eliminate the summand

Y+ 7Y from operator H,, and to transform

H,, expanded up to terms J4 to the reduced form m;‘;d,

in the basis |J , K > of rotational wave functions of a

symmetric top. The reduced operator has matrix

elements </, K| m,rlfld | J, K + AK > only  with

AK =0, + 2 (a three-diagonal form of the effective
Hamiltonian in the absence of random resonance).

As stated above, for some nonrigid molecules the
considerable change of spectroscopic parameters at the
powers of operator J, is a characteristic feature of
excitation of quantum number vy. As a consequence,
A(1)¢A(2) even in a zero-order approximation (for
example, as in the case’ of HyO). From this condition
it follows that the second summand must be taken into

account in the term m22—m11=(62—e1)+(A(2)—

—A(1))]§+... of Eq. (1.8). By introducing the

designation

a§? =w? £ 5Py /2, (1.11)

we can write Eq. (1.8) in the form

Hiy = Hiy + [iS1p, HGOY + (S, Hy ) +

+[iS, Hpl + ... . (1.12)
1 . (2

In this equation it has been considered that ey = €13,
so that Syy = Sy =S (parameters 85'3) determined from
Eq. (1.10) are expressed through the parameters h%%

and C™ which depend weakly on n). Equation (1.12)
differs from the analogous one used for semirigid
molecules by the presence of anticommutator

{iSy9, H((f)} (see, for example, Refs. 4 and 5). The first-
order generator of transformation S, has the form?*

iS12:’Y20 (]34’]%)‘1’ . (113)
Disregarding in expression for H 1o the summand

[iS, H,5] which does not change the form of Hj, and
describes the contribution of higher orders, we find that

Hyy=Fo+Foyo >+ Fopa 2+ Faoo (J3+J2) +

+Fo 2L+ D= (L, + 1) T2 +

+ 290 AL U2 U+ DX+ L+ D2+ L (1.14)
In this expression

Fgp = Fago + {(Ey — Eq) +2 AEE)} 20, (1.15)
Fygy = Fap — 4 AS) Y20, (1.16)

and AS) are defined from the equation
A =D £ 4Dy /o,

Choosing the parameter vy = Fop1/4 AS), we can

eliminate the term containing parameter ;7201 from the
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operator H 12 and in such a way transform it to the
reduced form mliezd However, the summand

AHyy = 2730 A U2 (L + D2+ (U, + D2 I3,

remains in mﬁed. This summand is absent in the
approximation of such order for the model of semirigid
molecules for which it is assumed that AS) =0. Let us
consider in more detail some peculiarities of accounting
for the effects of nonrigidness in the procedure of
reduction of the Hamiltonian H given by Eq. (1.1).

2. FERMI PAIRWISE INTERACTION IN
NONRIGID H,O-TYPE MOLECULES

Let us consider again the effective Hamiltonian H
given by Eq. (1.1) for the pair of interacting
vibrational states (1) = (1, 0, 0) and (2) = (0, 2, 0)
having the same symmetry type. The account of strong
vibration-rotation interaction is the cause of
nonpolynomial character of dependence of zero
approximation on operator J, (see, for example,
Refs. 3, 9, and 10)

HY = E, + hy(J) + B™ 72+ P G2+ 7H. @)

Particularly, the operator %,(J,) can be expressed in
the form910

h(J,) =A™ G.(J), (2.2)

where A™is rotation constant as in Eq. (1.3),

G,(J) =2/0" 1+ J2 - 1), (2.3)
and o is a certain constant dependent on J.
Employing the properties of symmetry of a molecule we
can write the diagonal operators H,,, in the form

Hyy ="+ S P U+ ) hpy +
(p+q+r > 1)

+higer U+ p) ),

I(JZ), are some functions dependent on J,. We
can assume’ that the coefficients B™ and q(") in
Eq. (2.1) are independent of =, i.e., B™ =B and

q(") =¢q. According to Refs. 5 and 8 the operator of

interaction can be written as

(2.4.)

where &

H12 = z ]21 {Jzk (]z + k)m F2k21m +
L,k,m

+ (= D" Fapgm (J, + ™ J2H. (2.5)

In contrast with Refs. 5 and 8, here Fy;yp, are some
functions of operator J,. Let us introduce a small

parameter A = 2(1_5’/5))1/2 in the same way as for
ordinary molecules (B is the mean rotational constant,

o is the mean frequency of harmonic oscillations). For
H,0 molecule L ~1,/10. The order of terms Cq'J’ in
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. el . . . . i+7—
expansion of initial Hamiltonian is determined as A"/ 2

(here C is an arbitrary spectroscopic constant, ¢ is a
common power of rotational operators ¢, and j is a
common power of vibrational operators J); therefore,
¥ is the order of terms in Eq. (2.2) for Fermi
resonance formed by operators C g q% J.  Such
definition is valid for rotation quantum numbers
J ~10. Some exceptions exist in definition of the
operator orders because the parameters at operators Jfk
are, as a rule, by an order of magnitude greater than
the parameters at operators 7% and Jik. The
spectroscopic parameters of the HyO molecule of the
first three orders are presented in Table I. These
parameters were calculated from the potential field of a
molecule as well as obtained by processing of an
experimental spectrum. It is seen from the table that,
for example, summands F and Fg ]z are of the same
order. The first-order operator of interaction myy has
the form

Hyy = Fo + Foy J2 + (~3%)

+ Fopo J2 + [J2 Fago + Fago J21+ ..., (222) (2.6)
where FO = FOOO-

TABLE I. Values of the effective Hamiltonian

parameters of the first three resonating viBrational
states of the HyO molecule.

Vibrational centers E,, and rotational constants A (Ref. 7)
State | (1) =(1,0,0) (2)=1(0,2,0 (3)=(0,0,1

E, cn! 3652.5 3156.2 3755.9

A em™! 15.4 23.7 14.9

Calculated parameters of interaction!3 (in cm™!)

FO =45 F002 =-0.2

i - o <03

c2=04

Note: The term!3 < W, ()BT ()] W,(p) > /A2 was
used to estimate Fs.

In the operator Hyy given by Eq. (1.8) we can
disregard the contribution of the commutator
[iS,, Hi], which does not change the form of this

operator. When calculating Hy, we use the following
properties of the zero-order approximation:

H (2R =HPU) £k £20) @I, 2 k);  (2.7)

S ==kt @y, R ), (2.8)
T S =245 18 G (U, + k). (2.9)

In these formulas % is an arbitrary integer;

0D =4 /G =A% /o™ DY 2.10)
fom = A/ G1,

Ay = (AP 24 20l = (™ £ ) /2,
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Gi=U+aH? G=Q/a) (G~ 1). (2.11)

Consequently A and o = o are some mean values
of A and a for two vibrational states. The first-order
generators of transformation iSy have the form

iS1y = (U3 20 + 120 J2) + (~27)

U+ Dy =y U+ D T2+ (%)

+ (U vio+ a0 D + 13 U+ 1Dy +

+v22 (]Z+1)2]g]+... (~7u5)
(2.12)

The summands from iS5, which commute with

h,(J,), are disregarded here. Let us consider the form
(k). red

of the operator ““'my, reduced to 2%, This operator is
obtained from Eq. (1.8) with subsequent fixing of the y
parameter. The operator (1)m?§d reduced by rotation
contact transformation (CT) to 4% has the form

(1)H€e2d _ (1)177112 = Fy + Foo ]3 (2.13)

The operator reduced to atis

PHE = Fot Fo I + Foog J* + U2 W50 (1, + D) +

+ 52 (7, + 1) J3, (2.14)
where
W (7, + 1) = Fago + 210 A G (T, + 1), (2.15)

and parameter Fygq is defined by relation (1.15). As
earlier, the function vy, is chosen to eliminate the
summand containing Fyq, i.e.,

Yoo = Fao1 /4 [$3).

3)

The operator mliezd reduced with the accuracy up

to 2.9 can be written as

(3)H1i(52d _ (S)Hliefl + A(3)H12_ (2.16)

2 . .
D = 3 Fogi AT + (1295 (7, + 1) +
i+j=0
+ ¥ (g, + 1) I3, (2.17)
AOH =245 17E 140G U, +2) +140 G (1, + 2 T4,
(2.18)

W (4 1) =W (J, + 1) + Fogp (J, + D* +
+245) vy L+ DG (U, + 1), (2.19)
Fago = Fagy — 4 13 fg) + 99 (Ey — Ey).

In the generator iSy, given by Eq. (2.12) the functions
Y21, Y40, and 7ypp are chosen to eliminate from the

transformed operator Pm!$ terms containing F g0,



70 Atmos. Oceanic Opt. /January 1996,/ Vol. 9, No. 1

F401, and Fog3. This process can be continued up to

higher orders of 2%, In any case, the operator (), red
can be reduced to the form
(k)quzd (k)Hred +A(’€)H12, (2.20)
where
CHE ) = X Foog 777+ U2 WP (L + D +

i+j=0
+ 50 (7, + 1) I3, (2.21)
and the concrete form of operators ‘{’(k) and A(k)

depends on the value of k. It is evident however that

beginning from k=3 C(i.e., from 25 the operator

(k)mﬁd contains the terms A(k)m12. These terms in the
basis of rotational wave functions |J , K > have matrix

elements with Aj =+ 4, £6, ... and are absent in the
case of semirigid molecules. If AE) =0, the results
coincide with that presented in Refs. 4 and 8, i.e., for
any order of the perturbation theory m}y can be
reduced to the form that in the basis |], K > has
matrix elements only with Aj =0, £ 2.

3. PAIRWISE INTERACTION IN NONRIGID H5O-
TYPE MOLECULES IN THE CASE OF CORIOLIS
RESONANCE

Let us consider now the interaction of states
(1) =(1,0,0) or (2) =(0, 2,0) and 3= (0, 0, 1) that
have different types of symmetry. In the case of
pairwise interaction, effective Hamiltonian H of a
molecule still has the form given by Eq. (1.1). The
operators m,, are set by Eq. (2.4) and operators of
interaction m,3 (n = 1, 2) are set by the equation”811

Hyy= S 2 O QT+ 2k + 1D +
kj,1

+ (- 1)/ Hey, (3.1)

where HC means Hermitian conjugate part. When only
first orders of expansion of operator m,3 in a small
parameter A are considered, this operator can be written
in the form

CiY I + . U+ D+
1) or (D) (3.2)

ng_(]+c(n)
+ QLD T+

(")—ql(;})o is introduced in Eq.

The designation ¢
(3.2). Parameters q2k+1]l are some functions of the
operator J,. It is seen from the table that the first two
terms of m,3 are of the same order and we will keep
this order for n =1, 2. Operator m,3 written up to
orders 22 contains two summands, up to a3 - four, up to
ao- eight, etc. Similarly to the case of Fermi
interaction considered in the previous section, let us

consider the operator of interaction I~{n3 only,

V.1. Starikov

disregarding the contribution of the last summand in
the transformed operator

5= H,i3+ iS5, HS 1+ {iS i3, HY )+ [0S, Hygl + ...
(3.3)

assuming that this summand does not change the form

of H,; Starting from Eq. (3.1), we can obtain the
generator of rotation contact interaction iS,3 in the
general form8:11

iS,u3= X AT TR QT+ 2k + 1)+
k,1,j

+(- 1) HCy. (3.4)

In the first-order approximation formula (3.4) has the
form

iSy3= (1 P10 — BYY T + (~1)
n3 +B B (3.5)
FUe QLD B - B QUL+ T D),
Designation B(n) = Bf]nl)o is introduced here. Let us
(k)

consider the form of the operator
1)

m,3 transformed up
to orders 22*. The operator
orders 2> (k = 1) has the form

m,3 transformed up to

where

Dt 1= U, TR -TP I +17, QUL+ TH +

W@+, (3.7)

APH =243 1), G (U, +1,/2) B -
-8 G, +1,/2) 7] (3.8)

Parameters C‘(ﬁ)) and 6(1"1) are set by formulas

T = w4+ g (B3 - E,), (3.9)
Ciw = C(") +3 -, (3.10)

The independent parameters of (1)f1n3 for n=1
and n =2 can be chosen in different ways, because

when n =1 the term A(1)m13 can be neglected. In this
case the parameter B%) can be chosen so that the term

C%) vanishes, i.e.,

i) = C\D /(E) - E3), 311

then

Opred 17,27, +1) TP + EW 7, +1) 71, (3.12)

Such choice is not obligatory for the operator

(1)m23 and the parameter B%) can be chosen in different

ways, i.e., unambiguously, because its choice depends
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on the value of detuning A23 For example, it can be

chosen to eliminate the higher-order term C12 , where

C® =y - R a3 2. (3.13)

(Here we used the expansion of G function entering
into Eq. (3.8) in a series in (J, + 1,/2).) In this case

(1)Hred J. C(Z) (2)] )+ {Js (2]2+1) C(Z)

P @y, 0T (3.14)

However, it should be noted that such method is not
unique. Let us consider the transformation up to terms

A% In the same manner as in the case of (1)I~Jn3 let us

represent the operator (2)I~{n3 in the form given by

Eq. (3.6), i.e.,

(Z)ﬁng = (2)1?113,1 +A (2)]?"3 (315)

In this representation (2)I~{n3 is given by Eq. (3.2) and
includes eight summands whose parameters C(%) are

connected with five parameters of the generator B(") of
transformation (3.5).

It is convenient to represent the operator A(2)I~1fn3

as a sum of two terms

A (2)I~{ns =A (2)Hn311 + A (2)Hn3,2 y (316)

where

A(Z)H31__2A3n {[J+ B(n)G(JZ+ 1/2) — HC] +

+ 1. B G (U, +1/2) (27, + 1) + HC], (3.17)
APH 3 9= 245 1B GUL+1,/2) 2T +1)* -
~HC1+/* [J, By G (J,+1,/2) ~HC] +

+ 173 B G (J,+3,/2) — HCJ}. (3.18)
Such representation is convenient because the first

terms of the summand A(Z)ITI,BJ in the expansion of G
function in a Taylor series in powers (J, + 1,/2) allow

us to convert the operator (2)ﬁn3 to the form

D, = (2)1'?;13,1 +A (2)Hn3,2 , (3.19)

with the operator (2)171;13 still keeping the form given by

~(n)

Eq. (3.1). The connection of operator g parameters

with parameters B is considered 111 the next section.

2)

Reduced forms mng depend on A . When operator
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A(z)mn&z given by Eq. (3.18) can be neglected, the eight

parameters of (2)ﬁn3 will be related to five independent

parameters B(") entering into Eq. (3.5). As in the case of
semirigid molecules, these parameters can be chosen so

that in the basis |/, K> the number of diagonals of

(Z)mZegd be minimum, i.e., matrix elements <J, K | (Z)rnzegd

|J , K+ AK > be nonzero only when AK =+ 1. As in the
case of ¥ 23 operator, among the terms that include
matrix elements with AK =+ 1 it is expedient to keep

summands with powers J,. Thus, one of the possible

(2) red

forms of the reduced operator ““m,3 written up to AL

for which A,(lg) =0, is

el =47, (27, + 1) TP+ HCY +

(2)H
.27, + D2CW -HC+ P27, + 1) T+ Hey.
(3.20)

If we cannot neglect the operator A(Z)m,geg% (for example,

for the HyO molecule when n = 2), the reduced operator

@ r%d includes matrix elements with AK = #1, +#3 and

many forms of (Z)m,rfgd are acceptable. Let us consider now

the transformation up to A8. According to Ref. 11, the
initial operator H,3 given by Eq. (3.1) and written up to
A8 includes 18 summands and in the generator of
transformation iS,3 the summands up to A5 should be
considered. There are 12 such summands. The transformed

operator (S)Hngy can be written in the form given by
Eq. (3.19), i.e.,

Oftg = Pl + A (S)Hn&z , (3.21)

where (S)Hn'g has the form of the initial operator given
by Eq. (3.1) and the operator A(S)Hngyz has the form

HC]+ > [J, 2], + 1>4x

AVHg,=1/245G
x (27, + 1% -

x (B — o™ BiGh /) — HCT + [/ (27, + 3)"

x (B3~ B8y /) ~HCI+ 17 (27, + 5) B ~HC),

(3.22)

with the accuracy up to the first terms of expansion of
If the operator A(S)mnw can be

neglected, the operator (3)I~Jn3 still can be reduced to
the form (S)m,rfgd which has matrix elements

<J, K| w7, K+ AK> only with AK =+ 1. It is

obvious that (S)m%d includes six summands [the first

three can be defined, for example, by Eq. (3.20)]. If

the operator A(g)mn32 cannot be neglected, then the

reduced operator @ ;egd includes summands that have

matrix elements with AK =+ 1, £ 3, £ 5.

G functions.
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4. APPLICATION TO THE FIRST TRIAD OF THE
H9O MOLECULE

Let us consider the application of the technique
developed to the first triad of resonating vibrational
states of the myn molecule. Three vibrational states
(1) =01,0,0), (2)=(0,2,0), and (3)=1(0,0, 1)
form this group of states. Effective Hamiltonian of the
first triad has the form of a matrix

Hyy Hyp Hyg
H= Hyy Hys | . (4.1)
HC  Hyp

The operators m,, (n,m=1,2,3) are defined by
formulas (2.4), (2.5), and (3.1).

The generator of transformation S entering into
formula (1.5) also has the form of a matrix

Si1 S12 513
S = Sy 593 |, (4.2)
HC Sy

In this matrix S,, are defined by relations (1.9),
(2.12), and (3.5) (to define S,,, only the main
generator is used). When n = m, transformed operators

H,,, can be written in the form

3
Hnn = Hnn + l z (Snm Hﬂlﬂ
m=1
and when m # n,

— Hyy, Smn) + .. (4.3)

7o : : (+) : (=)
Hnm_Hnm+ [IS’ Hnm] + [ZSY Hnm ] + {15717711 Hnm } .. ( )
4.4

Here 1S =1iS,, and n,m=1,2,3. Thus, main
distinctions of the proposed calculation technique from
analogous one used for semirigid molecules are the
following: 1) the zero-order approximation mg given by
Eq. (2.1) has essentially nonpolynomial form, 2) due to
the considerable difference between the values of
rotational constants the anticommutator enters into
formula (4.4) for operators of interaction. Let us
consider the form of transformed (or reduced) operators
of interaction (k)H,I;fS obtained for different orders of a
small parameter A.

Tmnsformation up to A

(1)I~{1 = Wpred and (1)Hn3 (n=1,2) are defined by
formulas (2.13) and (3.6), respectlvely. Formulas
(3.12) and (3.14) can be taken as examples of reduced
forms of (1)m¥§d and(l)mgegd. With the exception of the
zero-order approximation, reduced diagonal operators
have the form6

Operators

Hred

H, + iy T+ gy 2+ o TP T2+
+ 2R+ T TD + 12, + DR+

SR8 UL+ D2 (4.5)
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In this formula, parameters 7™ are connected with the

parameter 821) by the same relations as in the case of
semirigid molecules, with the exception of the
parameter

s NG Y (4.6)

It can be shown (see, for example, Ref. 12) that for an
isolated vibrational state in the basis of rotational
functions of symmetric top the effective vibrational
Hamiltonian always can be reduced to the three-

diagonal symmetric form. This means that operators

mf;ld of anf/ order can be reduced to the form mred. In
J,

the basis K> of the wave functions, this form has
the matrix elements <J, K | mmd |7, K+AK> only with
AK=0 or AK==zx2. After formal substitution

J? = G + aG? /4 performed in this operator, operators

red .
my, can be written as

d ) 721 ]
re Z (n g G{z 4
(n) PGl i 2
+ 2w JiG, U, +D+G,U,+DJ, 47D
i
where, for example, g(()ﬁ) =E, g(") A(n) The
connection of parameters o, g;;, and wu; W1th 1n1tial
parameters was  considered by Tyuterev and

Starikov.%19 In what follows we consider only the form

of operators that describe the resonance interaction.
Transformation up to A'. The operator 21
which describes the Fermi resonance has the form of

Eq.(2.14), i.e.,

d 2, 2
12 =Fo+ Fooa Jo + Fopo J™ +

1) %,

(2)H
+{J+‘P2) U+ D+, +
where

T _ 1) ~(2) 2) ~(1)
Fo0 = Foo = Bio” Cio” — Bio’ Cio

W (J,+1) = Fago + 2120455 G (L + 1) -

= 2 &y Fogo (J, + D%,
Faoo = Fao = B{Y <c(” i) + Bl + i) +
+{(Ey—Ep +2 A12 }Yzo . (4.8)

Parameter yyq is chosen so that 1?201 =0, where

-9 [B(l) (2) B(2) Cﬂ)] )

(4.9)

T (+)
Fao1=Foo1— 4 v20 [ 12

Let us represent the operators (2)mn3 in the form

given by Eq. (3.19). Parameters q;;; of the operator
(2)mn3,1 and initial parameters are related by the

following expressions:
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C(n) (n) n Bgn) (E3 Bgn) Fy,

Ew(n) (n) B(n )F002+B(H)(2C f +))+B(n)(E3_En):

TYD = C + 60, CS0 + 130 CY0 + 4BTPC + BSY (E5 - E,)
30 =C30" T€21C10” T 20 Bi1 B3o” (E3 — E,),

T =C8 =56y, /4CTY + [ya0 CS0° — 2 BB Fooz]/8 -

+ B (3 C - f%)) + B (E3— E,) - 1/2 By A5,

C(n) C(n) (n) f(+) 14 B(n)

B&Z) O 1,2 A5,

05’53 65’5%—618)F020+821C18+B§’5§<E3 E)+4p7 C,

i =+ B @ C— 5N (4.10)

Here n', n=1,2 and »n’'#n. The possible reduced
forms of (Z)rn;egd operators have been considered in the
(2)

previous section. In operators mﬂegd there appear the
summands with AK =+ 3. According to Section 3, the
summands that in the basis |J K > have matrix
elements with AK =+ 4 appear in Fermi blocks of the
Hamiltonian reduced up to 3% and they have elements
with AK =+ 3,35 in ng blocks. It should be noted
that additional purely vibrational transformation can be
applied to operator H to eliminate one more parameter
from mqezd block.4

5. CONCLUSION

In the present article it has been shown that the

reduced forms of interaction operators mfﬁs (n#m)
depend on multiplicity of excitation of vibration
quantum number v, in states (n) and (m). This
quantum number is associated with high-amplitude
oscillations. Due to large difference between the
degrees of excitation of this quantum number in (n)
and (m) states, operators mf,,(} in the basis |J, K> of
rotational wave functions have matrix elements

<J, K|m'| J, K + AK> with AK =0, +2, £ 4, ... in
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blocks describing Fermi interaction, and matrix
elements with AK=%1,%+3,%+5,... in blocks
describing the interaction of Coriolis type. The results
of application of concrete models of effective
Hamiltonian to interpretation of experimental data on

the HpO molecule will be presented in the next paper.
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