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Algorithms for determination of the first four moments and the related standard deviations, as
well as the asymmetry and excess coefficients of radial wind velocity components, measured with a
Volna-3 sodar are described. In addition to point estimates, interval estimates of these parameters are
calculated to characterize objectively the degree of reliability of the information obtained.

In recent three decades, acoustic radars (sodars)
have been actively used for determination of various
characteristics of the wind velocity field in the
atmospheric boundary layer. In spite of such a long
history of sodar measurements, the significance of the
information obtained is often low because there are no
objective characteristics of the degree of its reliability.
Let us present some typical examples.

Thus, Ref.1 presents profiles of the vertical
component of turbulence intensity I, for different classes
of thermodynamic stability of the atmosphere acquired
with sodar. However, these profiles are not accompanied
by the corresponding estimates of the measurement
errors, neither interval nor point ones. Without these
data it is almost impossible to judge on the actual
significance of differences in the altitude dependences
of I, measured with sodars under various atmospheric
stratification. The same is also true for other interesting
paper,2 which, in particular, presents the profiles of the
asymmetry coefficients of the vertical wind velocity
acquired with a sodar under convection and inversion
conditions. This list of examples can be extended further.

Thus, we can conclude that in acoustic sensing there
exists some neglect of the problems of metrological
support of measurements, what, in our opinion, is
inadmissible. To characterize objectively the quality of
sodar data, every measuring algorithm should include an
algorithm for assessing errors (at least roughly, e.g.,
providing an upper estimate of the possible error). One
of the possible causes for the absence of such accuracy
characteristics is likely the difficulty of their obtaining,
especially, if the relationship between the atmospheric
parameters sought and sodar data is nonlinear.

An attempt to eliminate these shortcomings was
undertaken in the processing system of Volna-3 sodar.3
First, let us note the following. Most sodars in each ith
sensing cycle measure directly instantaneous altitude
profiles of the radial components of wind velocity V(7),
that is, its projection V,(i) onto the corresponding axes
of the directional patterns of the antenna systems. Then,
taking into account the sensing geometry used, it is
possible to determine the characteristics of different

0235-6880,/03,/02 136-05 $02.00

components of the vector V needed: the orthogonal
components (Cartesian V, Vy, longitudinal u, and
cross v components), the absolute value V,, and the
direction ;. The vertical component w(i) is usually
measured through mere zenith orientation of one of the
sodar antennas.

In this paper, we describe the process of obtaining
the most important statistical characteristics of radial
components of the wind velocity V,(i): mean values
M(V,), standard deviations o(V,), asymmetry
coefficients y(V,), and excess &(V,). To objectively
characterize the degree of reliability of the obtained
information, one should calculate both the standard
errors and the corresponding confidence intervals for the
parameters to be estimated. The need in this is caused
by the fact that the quality of measurement of these
characteristics largely determines the quality of
assessments of other atmospheric parameters connected
with u, o, V}, and ¢;,. (This analysis is planned to be
presented in the future papers). On the other hand, the
information on the vertical wind velocity w is of
independent interest as well.

The problem formulated above is solved using the
methods of classical mathematical statistics.4> Toward
this end, assume that V,(i) measured with a sodar at
every fixed height form a set of independent sample
values corresponding to some continuous distribution
w,.(V,).

The quality of measuring the above parameters of
the radial components V, strongly depends on the
accuracy of estimating the centers of the distributions
W,(V,). The experience of operation of a Volna-3 sodar
and the data from Ref. 2 indicate that the distribution
of the radial wind velocity components in the atmospheric
boundary layer is not always Gaussian (normal).
Consequently, application of the classical optimal
assessment methods that assume W,(V,) to be Gaussian
is unjustified. Thus, the estimate of the distribution
center as a sample (arithmetic) mean is the best only in
case of Gaussian distribution of the sample processed. If
the distribution differs from the Gaussian one, this
estimate strongly deteriorates and loses its efficiency.
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The same is also valid for most parametric estimates
and in the presence of spikes, that is, anomalous values
disturbing statistical homogeneity of the sample
processed. Their presence may be caused by a powerful
short-term acoustic noise or too low threshold signal-to-
noise ratio specified by the sodar operator at spectral
processing.3 A few anomalous values are sufficient to
seriously distort the measurement results. The effect of
this factor increases with the increasing order of the
moment to be estimated. Therefore, prior to the main
statistical calculations, it is necessary to perform
censoring of the initial data taking into account that
the distribution law of the V(i) sample may be different
and varying in a rather wide range.

In the processing system of Volna-3 sodar, this
problem is solved by applying an iterative method
based on the results from Ref. 5. First, we reject the p
fraction of extreme values (usually p=10%) from the

variational series V(i) obtained from the initial series
V(i),i=0,1,...,L—1. Then, as a stable estimate of the
distribution center of the rest sample having the size
L' =L —[pL/100], we take the median of five means

I\A/Is(Vr): the mean over the range of the variational series,
ordinary sample mean, sample mean with rejection of
50% of extreme values, median, and quartile mean. Then
we calculate the values (estimates) of the standard

deviation &( V,), excess &( V,) (see below), coefficient
tim = 1.55 +0.8\& — 1log(L'/10)  and,
censoring boundary Vlffg =M s(V,) % tyim 6(V,). If carlier

finally,

rejected V(i) fall within the censoring interval, then
they are returned into the initial sample. Extra
rejection of the data is also possible. Then, for the new
series V,/(i),i=0, 1, ..., Ly — 1 we again calculate ]\A45,
6, € and Vlf,lg and compare Vlfg with V,'(i). The
censoring process is completed, if at some iteration step
the number of significant readings of the sample N does
not change. The procedure described can be applied to
a rather wide class of distributions, including various
bimodal and exponential ones from ¢=1 to €=6 (that
is, including the uniform (¢=1.8), Gauss (¢=3), and
Laplace (¢=6) distributions). This provides for the
efficiency of this algorithm in rejecting anomalous values
of radial components of the wind velocity vector.

The system of rejection of sodar data provides also
for the possibility of performing careful (responsible)
censoring of the data.> This is achieved by extending
the applicability limits of the censoring range through
substitution of the maximum possible values of & and €

into the above equation for Vlfgl at the confidence
probability P = 0.9.

At the next step of processing of the radial
components by the obtained statistically homogeneous
series V,(i), i=0,1, .., N—1, their distribution
centers M(V,) are refined. Toward this end, the most
effective estimate M( V,) at N > 20 is selected based on

the excess ¢ calculated at the last censoring step.43
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Thus, at & > 3.8 characteristic of distributions with
“heavy tails,” we take the median as 1\/\4(Vr), that is,
M( V,)=med(V,). Its standard error o[med]=

=\/D[med(Vr)] in most practical cases can be

approximated by a simple equation4:5:

slmed(V)] = o(V,) /AJ0.12N e16(V ), (1)

where o(V,) =+/D(V,) is the standard deviation of the
corresponding radial component of wind velocity;
D(V,) = uy(V,) is its variance; & = M(V,)/u%(vr) is
excess; wp(V,) is the kth central moment; N is the
number of processed values of V,(i) for the given
averaging time.

At 2.4<€<3.8 characteristic of close-to-normal

distributions, as ]\A4(Vr) we take the ordinary sample
mean with the standard error:

s[M(V)] = o(V,) /AIN. )

At 1<g<24 characteristic of flat-topped and
steeply decreasing distributions, as M(V,) we use the

median of the three means ]\A43( V,): sample mean, quartile
mean, and mean over the range of the variational series
V,(i). Tt can be shown that the upper estimate for
G[Z\A{g(V,)] is given by Eq. (2).

At N <20 the median of the five means listed

above M 5(V,) is taken as an estimate of the distribution

center M( V).

Note that all the equations for standard errors of
estimates of the V,(i) distribution parameters (in
particular, Egs. (1) and (2) for the distribution centers)
are the functions of the true values of the moments
we(V,). In practice, we always have to replace these

unknown parameters with their sample values pg(V,),
which can lead to distortion of the degree of measurement
objectivity, especially, with the growing order of the
moment to be estimated. One of the possible ways to
obtain acceptable practical results is discussed below.

Let us consider now the estimates of the higher
moments of radial wind velocity components using their
known unbiased versions.4® The unbiased estimate of
variance is

DV ={p(V) =my(V) N/(N=1), (3
N-1

where mk(Vr)z%Z[V,(i)—]\%(V,)]k is the central
=0

sample moment of the kth order. As the unbiased
estimate of the standard deviation, we use

5(V,) :{G(V,) (N-1)/(N-1.5), 2<N <20
&

), 20<N,

where &(V,)=\/D(V,). Since the variance of the

variance estimate is4:
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pibv)] = D2, )[ AR } (4)

the equation for the standard error of the estimate of
standard deviation in the first approximation has the form
o(V,)

SIN

The unbiased estimates of the third and fourth
central moments are:

o[6(V,)]= (V)

3(V,) = my(v,), N=3, (5

NZ
(N-D(N-2)

A \% _ N
V) = S

x[(N2-2N +3)m 32N -3)m2], N=4.  (6)

Then, taking Eq. (3) into account, the estimates of the
asymmetry coefficients y(V,) and excess (V) take the
form

VN(N-1)

V) =)
O D o B O
") N(N—Z)(N—S)[(N 2N +3)E(V,) 3N -3)],

where

TV =m3(V,)/m3 2(V,), EV,)=m(V,),/m3(V,)

are the corresponding initial biased estimates of y and e.
The relation between the standard errors becomes
evident:

o3V )] _JN(N-1)

—TGF(V )l
(V) N-DIN*-2N+3) .
ole(V1- NN-D(N-3) eIl

Let us present the equations obtained in Ref. 4 for
the variances D[y] and D[g]. To make the presentation
clearer, we omit the arguments of the corresponding
estimates and central moments:

D[y]=
4u2ue 12001305 — 240310 +9udiy +35p3u3 +36u3 D
4u5N
DIE] = (u3ug —4nomgie —8u3nsus +4us —njng +
+16pau3p g +16p303) / (USN). (®

It follows from Egs. (7) and (8) that the standard
errors o[y] and o[€], along with the sample size N, are

mostly determined by the excess and moments of higher
orders up to the eighth one inclusive. However,
replacement of pg and pg with the sample values pg, [ig
can lead to large errors in estimation of o[y] and o[£],
because of the very low accuracy of their determination
from the limited number of observations N. Reduction
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of the above equations to the Gaussian case through
replacement of pg and pg with the sufficiently accurately
measured py using known functional dependences is
also inaccessible because of a sharp change of ofy] and

o[€] as the distribution of the processed sample deviates
from the normal one. Thus, for the normal distribution
o[§]=4.9/YN, and for the
o[g]=34.47 /JN. Therefore, following recommendations

from Ref. 5, to obtain more realistic values of the
standard errors considered, we approximated o[y] and

Laplace distribution

o[g] as functions of €. For this purpose, analytical
equations (7) and (8) were used to calculate o[y] and
o[ge] for different symmetric distribution laws, whose
excess values cover practically all observable values. In
particular, the uniform (e = 1.8), normal (g¢=3), and
Laplace (¢ = 6) distributions were used, as well as the
bilateral exponential distribution with the exponent
a=0.5 (£=252). As a result, the following
approximations were obtained with the error no more
than 10% at the node points (for 1 < g < 25.2):

o[y]=loge(31.16-193.06loge+470.57log2 e~
—453.941l0g3e+156.19log%€) /N, 9)

o[€]z €loge(7.09-40.94loge+115.99log? e —
-116.3910g3e+45.76log%e) /VN. (10)

For a control purpose, we have calculated o[7]
and o[Z] by the exact equations (7) and (8) and by the
approximate equations (9) and (10) for a strongly
asymmetric single-sided exponential distribution (y= 2,
€ =9). As a result, the relative error for o[€] was 5%,
and for ofy] it was 18%, which is much better than
with the use of the two approaches described earlier.
Thus, at the Gaussian approach, calculated o[y] is
roughly 3.5 times smaller than the true value, while
ol€] is even 18 times smaller. The above-said leads to
excessively optimistic conclusions about the degree of
reliability of the information obtained, and this can
finally depreciate the measurement results. On the other
hand, if € of the initial distribution is much less than
three, then the conclusions concerning the experimental
results can be excessively pessimistic. At the same time,
application of Egs. (9) and (10) yields more adequate
values of the standard errors in the asymmetry and
excess of the radial wind velocity components measured.

For getting a more complete idea of the accuracy

and reliability of the considered point estimates ¢ of
the parameters of the radial components V,, it is
necessary to pass on to the corresponding interval values.
For this purpose, we should determine the random
interval Ip, which covers the true value of the estimated
parameter g with the given confidence probability P
At an arbitrary P, calculation of Ip requires knowledge
of not only the initial distribution W,(V,), but also the
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distribution of the estimates W(g), which is practically
unfeasible, in particular, because of the variability of
W,(V,). Even if we succeed in the determination of the

exact form of W(§), then it becomes necessary to search

the quantile factor zp corresponding to determined W(g)
and the given value of the confidence probability P in
the probability tables. As a result, the process of Ip
determination becomes very inconvenient for the
automated data processing needed.

A possible way out of this situation is the use of
Chebyshev inequality,4 in which the knowledge of only

G(&) is needed. However, the confidence intervals
obtained in this case prove to be too wide and
inconvenient for practical use. Therefore, to estimate
the degree of reliability of the information obtained in
the processing system of Volna-3 sodar, we have
implemented different approach that makes use of the
known unique properties of 90% confidence intervals.5:6
Indeed, for a very wide class of distributions (uniform,
triangular, trapezoidal, normal, Laplace distributions
and all other exponential distributions with the exponent
a>2/3, as well as bimodal distributions with the
antimodal depth less than 1.5) only Agg (halflength of
the interquantile interval with the 90% probability) has
a simple unique relation to the standard deviation o in the
form Agg = 1.6c with the error no more than +0.05c.
Consequently, the confidence interval for the estimated
parameter g at P = 0.9 can be written in the form

Ipg =19 - 1.66()) to g+ 1.65(D].  (11)

In Ref. 4 it was shown that (under rather general

conditions) the distributions W<(g) of any sample
quantile (including the median) and the functions of
sample moments are asymptotically normal regardless of
the form of the distribution of the initial sample. Thus,
the distribution law of the sample mean is close to the
normal one at N > 30 and any distribution law of the
processed data having the finite excess value.> In the
particular case of a Gaussian initial sample at N <30,
the Student distribution is used to determine Ip of the
parameter mentioned above. The quantiles of this
distribution can be replaced in practice with the quantiles
of the normal distribution already at N >8 (Ref. 5).
Similarly, to estimate the variance, the chi-square
distribution can be approximated by the Gaussian one
at N >30 (Ref.4). However, in our case for
determination of Ijg, fulfillment of the condition of
W(g) normality is not obligatory. For Eq. (11) to be
valid, it is necessary for the distribution of the estimated
parameter W(g) to be continuous and symmetric with
the excess falling in the range 1.8<e<12.3. To
determine the minimum sample size N;,, from which
Eq. (18) is fulfilled with an acceptable accuracy, we
modeled various initial distributions W,(V,) (with the
parameters characteristic of sodar measurements) and

all the above estimates §: M( V), 6(V,), y(V,), &(V,),
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using the uniform, Gaussian, Laplace, and Rayleigh
distributions. For each W,(V,) and selected value of
N, we formed L,= 1000 realizations of V, and,

correspondingly, calculated L, values of g. Then we
determined the 5% (pgo3) and 95% (pg g5) quantiles of

the obtained sample distributions W(g). With the given
L,, these quantiles are calculated rather accurately,>:6
which allows us to take their values as the reliable
upper and lower boundaries of the sought 90% confidence
intervals. From the corresponding accurate estimates,
following Eq. (11), we determined similar approximate
values of the confidence boundaries I; and I,, with their
absolute A and relative 8§ deviations from pg s and
P0.9s- As N = Ny, we took such size of the initial
sample, starting from which the condition 5] max < 15%
was fulfilled, where |6‘maX is the maximum value
among all |8| obtained for all W,(V,). Only for the

estimate y(V,), in the particular case of the asymmetric
Rayleigh distribution W,(V,), because at some N the

5% quantile of W(}) is close to zero, Ny, was selected
to correspond to fulfillment of the condition
‘A|maX <0.1. As a result of modeling, we have
obtained the following values of N ;.

1. For estimation of the V, distribution center,
Npin ~ 5. (For example, at N =4 |8 a0y < 18%).

2. For estimation of the standard deviation,
Nmin # 9. Note that N, for estimation of the variance
is much higher because of the higher initial asymmetry

of the distribution W(ﬁ) with respect to W(s). Thus,
for the initial Laplace distribution W,(V,) even at
N =20, the lower boundary of the 90% confidence
interval is determined with & ~ —50%.

3. For estimation of the asymmetry coefficient,
Nipin = 8.

4. The distribution of the estimated excess W(g)
at small N has a pronounced unimodal positively
asymmetric character. This determines also the
asymmetric arrangement of the 5% and 95% quantiles

with respect to the center of € grouping. Therefore, the
accuracy of calculation of the lower I; and upper I,
confidence boundaries by the approximate equation (11)
will be different. In this case, at a given N I, is
determined with higher accuracy and Np;, ~ 15 for that.
The accuracy of I; calculation strongly depends on the
form of the initial distribution W,(V,), that is, on the
value of the excess to be estimated. Thus, this relative
error |6| < 15% starting from N ~ 19 for the uniform
distribution, N = 40 for the normal distribution, N = 130
for the Rayleigh distribution, and even N ~ 550 for the
Laplace distribution. It is important to note that at
smaller N the values of I; are always smaller than the
corresponding values of pg 5. Consequently, the length
of the left part of the 90% confidence interval estimated
by Eq. (11) can be believed the upper estimate for its
true value. In this case, for the Laplace distribution
W, (V,) the difference A between I; and pggs can
achieve —1.5. For other initial distributions this shift is
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much smaller. Thus, for the normal distribution W,(V,)
A ~ —0.5 even at N = 15. Taking into account the above
notes, we accept N, =~ 15 as Np;, for estimation of
the excess.

Thus, at N = N, the result of measurement of
some parameter g with the 90% confidence probability

can be presented as gg g = g + 1.65(g). At smaller N, as
a measure of uncertainty in determination of g, we can
take the corresponding standard error.

All the algorithms described above we implemented
in the processing software for Volna-3 sodar3 and have
demonstrated their practical consistency.
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