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The problem is considered on the efficiency of excitation of spherical dielectric microparticles by
laser beams. Numerical investigations have been carried out of the resonance excitation of the optical field
in microspheres when illuminating them by focused Gaussian—Hermitian beams at central and side
incidence of radiation. Configurations have been determined of the most optimal transformation of the

laser beam energy into the field of the resonator modes.

Introduction

As known, transparent microparticles with the size
much greater than the wavelength of incident radiation
can be considered as optical resonators with high O-
factor values and are of some interest when studying
various nonlinear optical interactions in a small volume
of a substance. The resonance excitation of the optical
field in such systems is yet a problem of primary
importance, especially in view of a wide use of
microresonators as optical devices for the purposes of
aerosol spectroscopy and optical microelectronics.! A
number of experimental and theoretical investigations
carried out during the past two decades (the review is
presented in Ref. 1) has shown that a sharp increase is
observed in the efficiency of nonlinear relation between
the waves that interact inside the particle, if resonance
conditions for pumping wave (the so-called "input"
resonance) has been satisfied. In particular, it leads to
a significant decrease in the energy threshold of the
effects of stimulated light scattering (SRS, SSMB, and
stimulated fluorescence).

As it follows from the Mie theory, the necessary
and sufficient condition of obtaining the resonance
configurations of optical field at illumination of a
spherical particle by a plane wave is the existence of a
certain correspondence between the value of the
particle diffraction parameter x, = 2may/N (qq is the
particle radius and A is the wavelength of pump
radiation) and its refractive index m,. Then one of the
terms of the expansion series of the internal
electromagnetic field over special partial waves (spatial
frequencies) starts to dominate that leads to the
transformation of the spatial structure of the field and
its concentration in the ring zone near the particle
surface. Thus generated resonance oscillation modes
are called in the scientific literature the whispering
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modes which are characterized by high values of the Q-
factor (Q 0105-108). However, in practice, one
usually deals not with the plane waves, but with
focused beams. The diameter of the beam waist can be
about particle diameter as small or even smaller.
Spatial structure of the optical field inside the particle
in this case is also different than that in the case of a
plane wave. The internal field is located according to
the beam profile along the direction of its incidence on
the particle and takes maximum value at the principal
diameter of the particle. Moreover, the light beam can
enter the particle not along its diameter, but a little bit
asides that leads to the appearance of the sharp
asymmetry of the internal field distribution, first, in
the azimuth.

Therefore, these peculiarities can lead to the fact
that even if the aforementioned necessary conditions
hold, no resonance in particles is observed with the
sharply focused beams. The illustration of this fact is
presented in Fig. 1 that shows a 2D distribution of the
relative intensity of the optical field (in xy plane)
inside a liquid drop the radius of which corresponds to
the TE%O mode resonance at illumination by a Gaussian
beam with the half-width wy=ay/2 and different
displacement of the beam axis relative to the particle
center along the coordinate y. It is seen that at the
central incidence of light beam (yo =0, Fig. 1b) the
field in the particle is not resonance contrary to the
case of a plane wave incidence under the same
conditions (Fig. 1a@). The ring structure of the field
characteristic of the resonance appears only at the
displacement of the beam toward the particle edge
(Fig. 1¢) and complete correspondence to the case with
a plane wave is reached at yy>ay (Fig. 1d).
Experimental study in Refs. 2 and 3 was the first to
pay due attention to this fact and the theoretical basis
of the phenomenon was laid in Refs. 4—6.
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Fig. 1. Spatial distribution of the relative intensity of optical field inside a water drop (x, = 49.8983) at its illumination by a plane
wave (a) with the wavelength A = 0.65 um and by a Gaussian beam (b—d) with the parameter wg,/ay = 0.5 as a function of the
beam position relative to the particle center yo,/ag = 0 (b), 0.5 (¢), and 1.12 (d).

In this connection, when considering the resonance
excitation  of  optical fields in a  particle
by a focused beams, it is necessary to take into
account the spatial profile of the light beam and
the geometry of its incidence in addition to the
diffraction parameter and the refractive index of the
particulate matter. This paper presents a theoretical
investigation of the effect of these parameters on
the efficiency of excitation of the resonance in spherical
particles.

The paper is organized as follows. The principles
of description of the electromagnetic field of Gaussian—
Hermitian focused beams are briefly considered in the
first part that is a review, following the original
papers.49714  The relationships for amplitudes of
spherical components of the electric vector of the
internal optical field in a spherical particle at its
illumination by a focused beam are
also presented here. The second part of the paper is
aimed at the study of the efficiency of excitation of the
resonance of the internal optical field in the particle as
a function of type and characteristics of the beam.
Analytical formulas for the parameter of the beam axis
displacement and its half-width providing the optimal
conditions for transformation of the pumping radiation
energy into the field of oscillation modes of a particle
are derived based on the beam shape coefficients. 13

1. Peculiarities of distribution
of the internal optical field of particles
at illumination of them by focused
Gaussian beams

As known, the classical Mie theory is used for
describing diffraction of a plane electromagnetic wave
on a dielectric sphere. In the case of not plane but
spatially limited light beams with an arbitrary
distribution of the intensity over its cross section one
can also use the results of this theory, if preliminary
generalized to this class of beams. Many investigations
were devoted to this problem, among which we should
note Refs. 7 and 8. The central point of the generalized
Mie theory is representation of the electromagnetic
field of a light beam incident on the particle in the
form of series expansion over partial waves (spherical
harmonics) analogous to how it is done in the case with
a plane wave. As a result, two sets of coefficients
appear, (¢"™)tg and (¢")1y, which describe the
amplitude and phase of each partial wave and are called
the beam shape coefficients (BSC) for the partial waves
of TE and TH polarization, respectively.® These
coefficients do not depend on spatial coordinates and
also are determined by the specific profile of the beam
and geometry of its incidence on the particle.
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Let us consider briefly the description of the field
of a focused Gaussian beam using Davis
terminology.% 19 Let us introduce the coordinate system
(x'y'z") the origin of which is at the center of the beam
caustic of the half-width wy (Fig. 2). Let us suppose
that a linearly polarized (along x axis) Gaussian beam
propagates along the z' axis. The second coordinate
system (xyz) is usually related to the center of a
spherical particle and is used for the series expansion
over partial waves. Position of the origin of coordinates
(x'y'z") with respect to the origin of the coordinate
system (xyz) is set by the coordinates (xgy, g, 2o). To
simplify the derivations, let us consider the case when
X9 =1yo=29=0. Generalization to the case of an
arbitrary xg, ¥, zo is obvious but leads to rather
cumbersome relationships.

Fig. 2. Coordinate systems in the problem of diffraction of a
focused light beam on a spherical particle.

Let us describe the polarized laser beam in the
coordinate system (xyz) by the vector potential
A= (A, 0,0) where the non—zero component A, is
determined by the following formula:

A, =W(x, y, 2) exp (- ikz). 1)

The function W(x, y, z) should satisfy, by definition,
the Helmholtz equation

02A(x, y, z) + k2A(x, y, z) = 0. )

Obviously, such a description of the beam field requires
differentiation with respect to all coordinates.
However, the scale of variation of the coordinates x
and y is small as compared with the scale of variation
in the lengthwise direction z, which is related to the
diffraction length [, = kw%. So it is necessary to
introduce the dimensionless coordinates (&, n, {)
defined as

E=x/wy;, n=y/wy; C=2z/1,.

Then, substituting expression (1) into Eq. (2) we
obtain the equation for the function W(g, n, 0):
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2 2 oW(E, n, O
%-Fa—nZHW(E, n, 4 - 2ia—Z+

PW(E, n, O
12—

+ s (3(2

3

The small parameter s is introduced in this
equation, which has the meaning of the dimensionless
parameter of the beam focusing:

s=wy/l, =1/ (kwy). (4)

This parameter is equal to zero for a plane wave
(wy > ), and usually s 01072-1073 for actual beams.

To solve Eq. (3) the function W(&, n, Q) is
expanded into a series over the small parameter s2:

W(E, n, Z) = LIJO(Ei n, Z) + 52 qJZ(Ev n, Z) +

+s4WE N O+ (5)

The first term in Eq. (5) describes the solution for
the fundamental mode of a Gaussian beam TEMyj:

Wo(g, n, {) =iQz exp [~ in(E2 +n?2)], (6)

where Qz = (i +20)71; |Qf| is the dimensionless beam
width.

If the function W, is known, the high order
corrections Wy, can be determined by substitution of
Eq. (6) into the initial equation (3):

2 02 0
% tonE 2i &H‘Pzwz @&n, 0=

GZWQ,,(E, nv Z)
T > 0. 7)

Electric E and magnetic H vectors of the field are
related to the potential A by obvious relationships:

E:_TED(DA)—@A; H=1/u3 A).

These formulas allow one to classify the beams.
The beam of nth order (by Davis) is obtained from
Eq. (7) by omitting all terms, the order of which is
higher than s%. Thus, the field of the first order beam
depends only on Wj, the beam of the third order
depends on Wy and W5, and so on. Let us note that,
generally speaking, none of the beams does not exactly
satisfy Maxwell equations, only at n — o or s - oo,

Following the standard procedure of Mie theory,
let us represent the scalar function W(E, n, {) in the
form of expansion over partial waves in the spherical
coordinate system!!:

l'IJTE(”’ 97 q)) == k?’ X

x g )" %(g’;})TE W, (kr) P" (cos 8) exp (im¢) ;

n=1



A.A. Zemlyanov and Yu.E. Geintz

kr

X

LIJTH(r, 9, (b) = -

X n§1 (_ l)n%(g%)TH l'pn(kr) P7;ZZ (COS e) eXp (lmq))
(8)

Here P (cos®) are the Legendre polynomials and the
shape coefficients (¢’ and (¢")ty can be
determined as 2D integrals of the radial components E,
and H, of the initial beam field:

| _(kr)2 n—m)‘

(gm)TE:_ET(l ) w (k?") (n—|m|)‘

A 2m cH,(7,8,¢)
xJ sin® de J déd P” (cosB) exp (—imd) n—HO :
0 0

1 n- 1 (kr)? n—M)’

(@")rH =~ ATt (i

W, (kr) (n - |m|)'
" T cE/7, 8,)
xJ sin © dGJ d¢ P" (cos8) exp (- 1m<l))T0 9
0 0

Radial components of electromagnetic field are
related to its Cartesian coordinates by the known
relationship:

E,=E,sinBcos¢ + E, sin®sind + E, cos 8.

Thus, for example, we obtain for the beam of the first
order (in Davies approximation) at arbitrary (xg, yo,
z9), according to Eq. (6):

E, = E( iQ¢z exp (ikzp) exp (- ikr cos0) x
x exp[— (skr sin®8)? iQ¢] exp [— lQZ(EO +n; 2)] x
x exp [2s iQg kr sin® (§y cos ¢ + ng sin ¢p)] x

x {sin® cos ¢ (1 — 2s2kr Qg cosB) + 2s & Qg cos B},
(10)

where &y = x¢/wg; No = Yo,/ @y; (o =20/, The
expression has analogous form if one replaces cos¢ by
sing and &y by ng in the last row of Eq. (10).
Supposing that the BSC have been determined
with the required accuracy, the expansions of the
spherical components of the initial light beam follow
from Eq. (1) and (8). For example, for the electric field

ZE() © n
E,=~- )2 Z =" Cn+ 1) W,(kr) x

x z (g7 T(8) exp (imd);

m=—n
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Ey 2n+1
Eg =~ kr Z( 28 n(n+1)

n=1

x {w,(kr) z (g™ g im T(B) exp (imd) +

m=-n

+ W (kr) Z (g™ T7(B) exp (1m¢)}

m=—n

n 2nt1
Ep =~ kr Z( 0 n(n+1)

{ W, (kr) z @MTE TI""(G) exp (im¢) +

m=-n

+ i W (k) %(g*;;)m im T7(8) exp (im$p)}. (11)

m=—n

The angular functions Tﬂ,f”l and Tl,’fl are defined as

() = —— Pl (cos 0); thi(0) = % Plml (cos).

6

Calculation of BSC (¢")rg and (¢")ty for the
specific type of beam is a separate problem and was
considered, for example, in Refs. 8, 12—14. Historically
first method for calculating the coefficients was the
method of direct integration of Eq. (9) using the
quadrature formulas. The method of finite series® and
the methods based on the Van de Hulst localization
principle for different classes of beams!3:14 were used
later. One should consider in detail one of them, the
method of integral localized approximation,!4 because,
in our opinion, it is the most flexible and effective from
the standpoint of numerical calculations. We use it in
our studies of the efficiency of excitation of resonance.

Following the extended treatment of the principle
of localization,> the light beam incident on a spherical
particle with the impact parameter r can be replaced by
a partial wave with the number n so that the translation
kr - n+1/2;, 0 - m/2; exp(—ikrcos®) - 1 is
correct. Then, if we introduce the so-called operator of
localization O as

QlfCkr; 81 = f(n +1,/2; m/2), (12)

and apply it to the formulas for the radial components
E, and H, of the Gaussian beam field, the
corresponding formulas for BSC ¢} take the form:

m 2T

(gTE = = QH:IO J do O[H,(r, 8, )] exp (— im);

(=}

m 2n

@11 = = gy J o OIE(7,8,)] exp (— imd), (13)
0
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where ZY=2n(n+1)/Qn+1); Z"=[-2i/Q2n+
+ 1)1 £ 0. Thus, to calculate the sets of BSC it
is necessary to know the formulas for radial components
of the beam field only in the focal plane z = 0.

It follows from Eq. (13) that all coefficients ¢” for
a plane wave (linearly polarized along the x axis) are
equal to zero, except (g;1)TE=$(i/2) and (g;1)TH=
=1,/2, because E,=E,sinBcos¢ and H,=
= H, sinBsin¢. Then for a Gaussian beam of the first
order of approximation we obtain:

O[E,(r, 8, §)] = Ey = iQg exp(ikzy) x
x exp[— iQz (&5 + N1 expl[— iQgs2(n + 1,/2)?] x
x exp[2s(n + 1,/2) iQz(&y cos ¢ + ng sin §)] cos ¢;
(gDt =1/2 (= Dl =1 gl =1 exp[— (€% + )] x

(EO _ ir]O)ImI -1

x exp (i (k wy)2Ly) (m — 1!

X

x {1 = 2iskwololm — (€2 + nd1} . (14)

The relationships of reciprocity between the coefficients
are valid!!:
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(9" @0, N0, Lo 1E = — [90 o, = N0, o) ITEs

(%o, o, LN 1E = (= D™ [ (o, = &, L) T, m = 0.

The majority of the results presented above are
related to the fundamental mode of the Gaussian beam
TEMg. At the same time, it seems to be important to
consider the principles of theoretical description of a
more wide class of Gaussian—Hermit beams of high
order, denoted in literature as TEM,,, with generally
arbitrary set of indices n and m. It was shown7:15 that
electromagnetic field of such beams can be described
based on the TEMg, mode field by means of cross
differentiation with respect to the coordinates, i.e., in
the following symbolic form:

0 0m[ TEMy]

TEM,,, = o&nonm (15)

Following this procedure, we obtain for the TEM(ﬁ))

mode of the Gaussian beam polarized along the x axis:
EY == 2i0; (€ - &) EY;
EY = =20 s[1 - 2iQg (& — §)?] E%;
HY = - 207 (€ — &) HY;

HYY = - 4i07 € - &) (n—np) HY.  (16)
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Fig. 3. Spatial distribution of the normalized intensity (in the focal plane z = 0) of the light beams TEMgy, (a), TEMyqy (b),

TEM; (¢), and TEMY." (d).
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Correspondingly, for the ring beam with circular

polarization TEMglhﬁl) = (TEM(fCO) +1i TEM(OXB)/\/E:

EQ = HI" = = \20[i(8 - &) — (n — np)| EF;
EY = =207 s[1 — 2i0¢(& — &2 +
+207(& - &) (n — o)l EY;

HY% = i[207 5[20¢( = &) (n = ng) +

+2iQg(n — ng)2 — 1] HY. (17)

, No =0 (e); and TEMyy, ", no = 0.3 (N.

The components of the fundamental mode field EOEO and
H?]O in Egs. (16)—(17) are equal to:

EOEO = H?}O = EO ZQZ exp (lkZO) X

x exp {~iQz [(€ = &2 + (n = ny)2]}.

The distribution of the normalized intensity of the

beams TEMgg, TEM;g, TEM;;, and TEMYS" in the

cross section z=0 is shown in Fig. 3. They are
normalized to the value equal to the intensity of plane
wave in vacuum (cE% /8.

Let us return to the problem of scattering of light
wave on a spherical particle. The aforementioned
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reasoning show that the components of the internal
electric field inside the particle in the case of incidence
of a spatially limited focused beam on the particle can
be written as follows:

iEq
E,=- (27)2 zn(nﬂ)w &) 5

m=—n

" (8) exp (imd),

Fo= ¢ 39 3 o i ) exo i) +

m=

+ 1 W, (kr) z At |m|(9) exp (imd)};

m=—n

Ey =~ kr z{ W,k S d ) exp (imb) +

m=—n

n
i Wk S Y im T(O) exp (imd)}.  (18)
m=—

As is seen, it is the generalized analog of the
relevant formula for plane wave taking into account the
modification of amplitude coefficients ¢, and d,, by the
beam shape coefficients:

¢y =y (G dy = dy (Gy)TE

Some examples of numerical calculations of the
relative intensity of the internal optical field in water
drops illuminated by Gaussian beams are shown in
Figs. 4a—d.

3. Efficiency of excitation
of resonance of the internal field

Let us judge on the efficiency of excitation of
resonance in particle from the value of mean energy of
the internal optical field W; accumulated during one
period. As known, the formula for it is as follows:

2

a
= j Bi(r') dr' , (19)
Va Va

where integration is made over the particle volume. Let
us use the expansions of the internal optical field over
partial waves and, for certainty, let us consider only
the TE,,, modes. Then

Bi(r) = lEe(r) Eg(r) + E¢(r) Eg(r)] =

(k 7,)2 |d11'z1|2 |qJn(ka7)|2 z z (gnl)TE (gn1)TE X

m=—-nmy=-n

xexpli (m—mpd]{mm;"(O)L"1(0) + T"(0)d™l(0)}.

Integrating with respect to spherical coordinates and
taking into account mutual orthogonality of the angular
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functions ’”'(e), TI,’,"‘(G), and exp (im¢), we obtain for
the accumulated energy the following expression:

W _E(Q)aOEaZn(n+1)
iT8k2 2m+1

X |d§?|2 {|qJn(kaa0)|2 + |Lpn + 1(’13(1‘1())|2 -

2n + 1
T Wikaao) Wi 1 (Raa)} %

(n + |m])! 20)

n—|mp)! -

n
x Y |(g)TE |2

m=—n

Similarly, for the TH,,,, modes we have:

W _E(Q)aOEaZn(n+1)
iT8k2 2m+1

P (W, (Raag)® + W, 1 1(Raag)] +

+2(§€Z;o;2)|q’ (kqap) — 2" w(kaao)wn+1(k“ao)}x
|
x Z (g )TE|2%‘ (20

m=—-n

As is seen from Egs. (20)-(21), the dependence of
the amount of accumulated light energy on the beam
type and geometry of its incidence on the particle is
completely presented by the factor

(n + |m))!

_ 2 my|2

m=—-n

and is determined only by the sum of the series over
BSC. Using Eq. (13), we obtain for the incidence of
plane wave (s - 0) on aspherical particle that in this
case the factor K,, takes its maximum value equal to

Ky(s - 0)=1/2n(n+1). (23)

It is the evidence of the fact that the beams that are
appropriate for excitation of corresponding resonance
configurations of the optical field are always present in
a plane wave, because its width is infinite. On the
other hand, if one estimates this process from the
standpoint of energy loss from the exciting beam, then,
obviously, plane wave has the smallest efficiency just
because of its infinite width. So let us consider only
spatially limited light beams.

Let us perform theoretical analysis assuming that
& =0 =0 and arbitrary ng and wjy. Thus, it is
prescribed that the beam axis moves relative to the
particle center along the coordinate y (see Fig. 2), the
width of the light beam also can vary. For certainty,
let us study excitation of only the TE,, resonance
modes in a particle.

Let us first consider the case of a Gaussian beam
and the fundamental mode TEMgy. According to
Egs. (13) and (14), one can write
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O[H,(r, 8, $)] Dexp (- iQzn3) x

xexp [2s(n + 1,/2) iQgng sin ¢] sin ¢ ;

m 2’

n

(g TE =~ 2T, J do O[H,(r,8,9)] exp (— imdp) O

0
: on
DZ exp (- inn%) {J. d¢ exp [iPy sin ¢ — id(m — 1)] -
0
2m
- J d¢ exp [iPy sin ¢ — ip(m + D1}, (24)
0

where P, = 2s(n + 1,/2) iQgno. Noting that
2m
I ¢ exp [iPy sin ¢ — ip(m — 1)] =
0
=21(— )"~ 11, —1(iPy),

where I,(z) is the modified Bessel function, let us
rewrite Eq. (24) in the form

(gre Dexp (= nd) [L,, - (R + L, + 1(R;

Ry = iPy. (25)

It is necessary to study the right-hand side of this
formula to reveal an extremum in its dependence on n.

Let us wuse asymptotic representation of the
function 7,,(Ry) for not very wide beams, i.e., when
the conditions Re {Rp} > 12 has been satisfied!®:

exp (Ry)
1,(Ry) :(2T[R—n)‘/2 x
m+2 (_ 1)k

x{1+kz1k!(8—Rn)k(4m2—1)(4m2—9)4..[4m2—(2k—1)]},

Re {Ry} > m. (26)

Only the factor before braces in Eq. (26) depends

on Rp(ng), which is the same for both terms in

Eq. (25). So, let us substitute Eq. (26) into Eq. (25)

omitting the factors independent of Ry, and use the
representation for Py, again:

exp {2ng[2s(n +1,/2) = nol}
415(n +1,/2)n,

[(go)re 2 O

Simple analysis shows that this function reaches
the maximum value at the axis displacement value
No = s(n +1,/2) = (ng)gg or, in absolute coordinates:

fep -t L2 @)
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As the inequality n >x, is always satisfied for
optical resonators with high Q-factor, it is obvious that
the beam axis should be outside the particle for the
most effective excitation of the resonance field inside
the particle. In spite of paradoxicality of this result
from the standpoint of geometrical optics, it is the
direct consequence of the Van de Hulst localization
principle considered above and is an evidence of the
fact that the resonance mode field is formed not by the
central part of the light beam, but by the field of its
edge part decreasing with distance, which forms the
subset of geometrical beams incident at grazing angles
to the particle surface.

The normalized factor K, is shown in Fig. 5 in
relative coordinates as a function of the value of the
displacement parameter yg,/ag of a Gaussian beam axis
(TEMgg, A = 0.65 um) for three resonance modes in a
water drop: TE}, (x, = 49.8983), TEZ, (x, = 54.2559),
TEZ, (x, = 53.9390). The curves are normalized to the
value of the factor K,, for a plane wave (Eq. (23)).

Kn
101

103
105
107
109 1 3
1014
10°%

1 L | s | s Il

0.0 0.5 10 15 y/a

Fig. 5. The normalized factor K, as a function of the
displacement yy/ay of the Gaussian beam axis (TEMyy,
A =0.65) for three resonance modes in a water drop: TEL, (1),

TE%, (2), TEZ, (3).

It is seen that the maximum of these dependences
is reached at the values of the parameter wgng/ay
determined by Eq. (27). The higher is the order of the
resonance mode, the closer is the position of the optimal
displacement of the beam to the particle surface.

If we consider the incidence of a Gaussian beam of
TEMy, mode on a spherical particle along the axis
(x9 = yo = 29 = 0), then, using Eq. (14), we obtain:

[(g™re |2 01 /41 = 252(n — D(n—2)], m==1.

Corresponding dependence K, (yo,/ap) at different
values of the parameter wg/aqy is shown in Fig. 6.
Thus, the wider the beam (smaller s), or, in other
words, the closer it is to the plane wave, the more
active is the excitation of resonances.
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Let us consider now the ring beams TEM,,.
Performing the same calculations as in the previous
case, we have:

O/ H,(r, 6, $)] ~

~ exp (= iQzn3) exp [2s(n + 1,/2) iQzng sin ] sin ¢ x

x {is(n +1,/2) cos ¢ — s(n +1,/2) sin ¢ + no};

(gre=—exp (= nd) {stu + 1,/2)(= D" 1, (Ry) -
—stn+1,/2(= D" 21, »(Ry) +

+ (= D) =201, - ((Ry) + 1y + (R} (28)

Krl

10-1 ;__§———""'—-___________"_““4f::;\\\
10-3 |

1
10-5 |
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107 |

:
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= 1 1 1 1
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Fig. 6. The normalized factor K, as a function of the relative
displacement of the Gaussian beam yo/ay axis (TEMyy,
A =0.65) at excitation of the TEZ, mode in a water drop
and different relative beam widths wg/ay = 0.3 (1), 0.6 (2),
0.9 (3), and o (4).

Then we take into account that, according to the
asymptotic (26), at Re {Ry} >1, I, + 1(Ry) >1,(Ry) >
>1,, - 1(Ry).

Then, approximately

(g1 |2 Dexp (= 20D = 7~ 2 g L 4 1(R)2 O
O exp (- 2r]%) No exp [4 Ng s(n+1,/2)] .

Seeking the maximum of this expression leads to
the result ng = 0. In other words, to obtain the best
results, the ring beam should be directed toward the
particle center. Intuitively, it is understandable,
because the structure of the intensity distribution in the
beam cross section is the ring with maximum situated
at the distance of 7y = (82 +n2)1/2 = 1 /~[2 from the
particle center. So, directing the beam to the particle
center and selecting its radius wg such that the
maximum of the intensity of the ring zone is at the

distance of (yg,/@p)oo = Tmax,» ONE can expect most
optimal excitation of the resonance.
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One can obtain the same result directly from
Eq. (28) by assuming that ng = 0. Indeed, in this case
the only non-zero beam shape coefficients are:

(G1E =s(n +1,/2) exp [s2(n +1,/2)?] x

om
x {i J do (cos ¢ sin ¢) exp (— imdp) —
0
2n
- J do sin? ¢ exp (- im¢)} =
0

=ms(n+1/2) exp [-s2(n +1,/2)2], m=%2,0. (29)

Varying the beam width wg, we obtain that the
coefficients (29) take their maximum values under the
following condition:

(wo/ap)gn =2 (n +1/2) / x,. (30)

The light beams with cross structure of
electromagnetic field corresponding to the TEMy; and
TEM{; modes are also characterized by zero value of
the intensity at the beam axis (Fig. 3b). Hence, it is
expedient to look for a maximum of the coefficients (g’
) only in their dependence on wgy (ng = 0).

Similarly to Eq. (28), we obtain for TEM(; mode:

OLH (7,8, $)]1Os(n +1,/2) exp [~ s2(n + 1,/2)2] sin2 @,
@Dre=15(n+1,/2) exp [ s2(n +1,/2)2]
m==2,0. 31

=Xl
[

0.5

Yo/ ag

0.30-
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Yo/ ap
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Fig. 7. The coefficient I_<,,l as a function of the relative
displacement yo/ay of the Gaussian beam axes of the
TEMyq (@), TEMy; (b), and TEMy, (¢) modes relative to the
water drop center at different values of the relative beam
width wg/ap=0.6 (1), 0.9 (2), 1.0 (3), 1.24 (3), and 2.0
).

The maximum of coefficients (31) is reached at
(wy/ aglo1 = '\/5 (n+1,/2)/x,

Correspondingly, for TEM; mode:

OH(r,6,¢)] O
Os2(n +1,/2)2exp [—s2(n + 1,/2)2] cos ¢ sin? ¢;
(g1E = (/2)s2(n + 1,/2)2 exp [~ s2(n + 1,/2)?]
m==%1, +3;

(wo/ap)11 = +1,/2)/x, (32)

Figure 7 shows the values of the coefficient K,
reflecting, as it was mentioned above, the efficiency of
excitation of resonance in a spherical particle, as a
function of the relative displacement of the axes of
beams of different spatial configuration and at different
parameters (w(,/ag). The calculations were made for a
water drop with the radius corresponding to the
resonance of TEl,) mode (x, = 80.99428).

Comparison of different plots in this figure shows
that in all cases the change of the beam width requires
careful selection of the coordinate of its incidence on
the particle. The exception is only the fundamental
Gaussian mode TEM(y. The maximum of the coefficient
K, is observed here at the same value of the beam
displacement as determined by Eq. (27). Figure 8
illustrates this conclusion, showing the dependence of
the coordinate of optimal displacement of the axes of
light beams (g, ay) on their characteristic width.
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06 08 10 12 14 16 18 4/q

Fig. 8. Coordinate of the optimal displacement of the light
beam axis yo/ap as a function of their characteristics width
wo/cloi TEM()O (7), TEM(M (2), TEM“ (3‘)Y and TEM[jn (4)

The maximum possible values of the coefficient K,

for the TE}OO resonance mode, which can be reached for
different types of beams, are shown in Fig. 9 as functions
of their width. It follows from the figure that the best
conditions for excitation of TE,,, resonances in
spherical particles are realized when illuminating them
by TEMg; mode of the Gaussian beam. This mode is
characterized by the fact that 090% of the total beam
energy is concentrated in two maxima (see Fig. 2) with
the half-width d}, = 0.42 wy which lie in the yz plane,
where the energy of the resonance modes TE,, is
predominantly concentrated. It causes the best relation
of the light field of the beam with the field of the
resonance modes of the particle and, hence, the high

values of the coefficient K, = 0.9 close to the idealized
case of incidence of a plane wave.

LK,
0.9 | 2

0.8 N
07l
0.6 —
0.5 —
0.4l
0.3 —
0.2 —

0.1}

0.4 0.8 1.2 1.6 2.0 @0,/ o

Fig. 9. Maximum possible values of the coefficient K, for
the TE}OO resonance mode which can be reached for different
types of beams depending on their width wg,/ay: TEMgy (1),
TEMy; (2), TEMy; (3), and TEMy, (4).
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Electromagnetic field of the ring beam TEMy, is
also concentrated in quite narrow zone but is uniformly
distributed over the angle ¢. Hence, the portion of the
beam energy is not used effectively, exciting partial
waves with another polarization (TH) in addition to
the TE,,, modes. For the same reason, the low
efficiency of excitation of resonances is realized for the

TEMy beams: K,, = 0.26 at wy/ay = 1.24.

Although the fundamental mode TEMg, of the
Gaussian beam has one maximum, it is quite wide
(dy, = 0.84 wy) that leads to the decrease of the efficiency
of transforming the light energy into the internal field of
the particle. Only quite wide beams can compete with
the modes TEMy; and TEMy,, (see Fig. 7).

Thus, summarizing the investigations presented in
this paper, we should note that for obtaining most
effective excitation of electromagnetic modes in
spherical particles, it is necessary to select the geometry
of illuminating them according to the spatial profile of
the specific beam and polarization of the excited
resonance mode. In any case, the position of maxima of
the spatial distribution of the pump field should be
outside the particle at the distance determined by the
Van de Hulst localization principle (Eq. (27)) that is
unambiguously related to the value of the diffraction
parameter of the particle and the number of the excited
resonance mode.

A.A. Zemlyanov and Yu.E. Geintz
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