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Within the framework of the Bayes approach to constructing decision rules for 
image recognition in the space of definitions of high dimensionality, we solve the 
problem of retrieving multidimensional conditional functions of the density of classes, 
based on normalizing transformations. These transformations satisfy two conditions. 
The first of them demands that estimated distributions of a separate feature agree 
with actual single–dimensional distributions at a practically acceptable reliability. 
The second condition states that the approximating distribution should describe 
statistical relations between the components of the vector of observations. 

 

At a subject oriented deciphering of aerospace video 
information one of the central problems is that of 
segmenting spectrozonal images of the underlying surface 
and cloud cover. In the course of such a deciphering the 
digitized initial image is decomposed into separate 
fragments, which are then treated as observed signals. The 
algorithm of image recognition, expressed as a decision rule, 
starts from such an observed signal and identifies the 
situation which had initially produced the observed class of 
input data. 

Among the numerous approaches to constructing 
decision rules of image recognition, one of the most 
formalized is the Bayes approach, which in fact makes 
testing of statistical hypotheses. It is within the framework 
of this approach, methodologically based on the theory of 
testing statistical hypotheses and on the theory of synthesis 
of adaptive information systems, that optimal decision rules 
for making decisions were obtained for situations when full 
a priori information is available under the condition of 
minimum of the function of losses. However, direct 
application of such an approach faces serious difficulties, 
mostly because in the majority of practical tasks of image 
recognition a priori information is incomplete. Indeed, we 
know neither the a priori distribution of images (classes), 
nor the conditional functions of density, which describe 
situations to be recognized (the latter is more important). 

The quality criterion of the algorithm of recognition is 
determined by averaging the payment matrix. Elements of 
this matrix are set quite arbitrarily, providing only for the 
function of losses to be convex. Therefore, it is admissible 
to set the probabilities starting with the condition of a 
maximum a priori indefinitness according to Laplace––
Bayes postulate. As to the conditional functions of 
probability density distribution, these should be 
reconstructed only from teaching sets of classes, which are 
of a limited bulk. Besides, in the problems of image analysis 
the observed signals have high dimensionality, exceeding 
the bulk of sampled data. 

In this connection it seems to be worthwhile to 
consider the problem on reconstructing multidimensional 
conditional functions of density from samples of teaching 
sequences, while describing observed values or their 
frequency distributions by a flexible system of mathematical 
formulas. 

We start from a standard formulation of the problem 
of image recognition in its statistical interpretation.1 

Probabilistic measures with their a priori distributions 
of classes P(λ) and conditional functions of probability 
density f(x/λ), λ ∈ Λ, x ∈ En are defined in a Euclidean n–
dimentional space of observations En, with the elements 
being the fragments of digitized images, presented in the 

form of a vector X ∈ En and in the space of hypotheses 
Λ = {1, ... , L}, where L is the number of hypotheses 
(images). A simple matrix of losses due to decisions taken 
(1 – δ

λμ
) is also defined there, where δ

λμ
 is the Kronecker 

symbol. The Bayes decision rule for selecting the hypothesis 
λ ∈ Λ from a series of mutually exclusive hypotheses, 
optimal in the sense of minimum of average losses, has the 
form 
 
u(x) = arg max

λ∈Λ

 P(λ) f(x/λ) , (1) 

 

where the solution u belongs to the space Λ as well. 
This decision rule may also be presented in an 

equivalent form, as a likelihood ratio compared to a 
threshold. 

If we have a sample of the observed vectors Xλ

1
, ..., X λ

N
λ
, 

classified by a "teacher", where N
k
 is the size of the sample, 

λ ∈ Λ, the average risk may be estimated by the empirical risk 
as follows: 
 

R = ∑
λ∈Λ

 
1
N

λ

 ∑
k=1

Nλ

 P(λ) I {λ = arg max
μ∈Λ

 P(μ) f(Xλ
k/μ)} , (2) 

 

where I{true} = 0, I{false} = 1 is the characteristic function; 
N

λ
 is the sample size of class λ ∈ Λ. 

It is natural to demand that the parametric functions 
of density f(x/λ), λ ∈ Λ to be reconstructed for decision 
rule (1) must satisfy two conditions. First, the estimates of 
distributions of separate features must agree with the true 
one–dimensional distributions sufficiently reliable for 
practical purposes. Second, the approximating distribution 
must describe, at least to some extent, the statistical 
relations between the components of the random vector. In 
this case, a wide class of multidimensional parametric 



 

distributions may be obtained, following the idea of 
transforming the distribution of the observed variable into a 
Gaussian distribution. 

Generally the idea of using transformations of random 
variables to construct multidimensional parametric functions 
of density, which have an increased approximating 
capability to describe probabilistic properties of the selected 
data sets, may be illustrated as follows. 

Let it be necessary to construct, to an accuracy of 
some parameters, a transformation 
 

y = y(x), (3) 
 

which transforms some random variable X ∈ En with its 
distribution F(x) and the function of probability density 

f(x) into a random vector value Y ∈ En with the 
distribution G(y) and a function of probability density 
g(y). After that the function of density of the random 
vector X is found using the following standard operation: 
 

f(x) = g(y(x)) 
D y(x)
D x  , (4) 

 

where 
D y(x)
D x  is the Jacobian of transformation (3). 

The approximating capability of the function f(x) thus 
obtained increases, because, in addition to the parameters of 
a "simpler" family g(y) it also depends on the parameters of 
transformation (3). 

To implement the representation (3) let us make use of 
transformations brought by continuous integral distribution 
functions (see Ref. 2, p. 187), which transform the random 

vector X to Y ∈ En with all its necessary properties. 
Consider the simplified version of that transformation, 
presenting it as a following two stage procedure. 

At its first stage we define the transformation, 
performed with a one–dimensional distributions, which 
transform the components of random vector X into the 
components of an auxiliary vector Z, Z ∈ En so that each 
component of the vector Z is uniformly distributed over the 
interval [0, 1] 
 

Z i = Fi(X
 i) ,  i = 1, ..., n , (5) 

 

where Fi(X
 i) is the marginal distribution of the component 

X i of vector X ∈ En . 
At the second stage we set strictly increasing functions 

of distributions Gi(y
 i), such that 

 

Gi(Y
 i) = Z i ,  i = 1, ..., n , (6) 

 

where Z i is the auxiliary random value from expression (5). 
Transformation (3), which provides for the 

component–by–component transition from vector X to 
vector Y, will, with the account of Eqs. (5) and (6), 
acquire the form 
 

y i = G–1
i (Fi(x

 i)) ,  i = 1, ..., n , (7) 
 

where Gi(y
 i) = ⌡⌠

–∞

yi

 gi(t) dt , i = 1, ..., n , and gi(t) is the 

one–dimensional function of probability density of ith 
component of vector Y. Below we assume the functions 
Gi(y

i), i = 1, ... , n in Eqs. (6) and (7) to be Gaussian 

distributions, for clarity reasons. 

In order to compensate, at least to a certain extent, 
for imperfection of transformations (7) and to account for 
the dependence of the components of vector Y, we assume 

the common distribution of the components Y 1
 
, ..., Y n to 

be a multidimensional Gaussian distribution with the 
correlation matrix ∑ and the vector of mean values μ. Then, 
with the account of Eqs. (4) and (7), the sought function of 
density of the initial vector X is written in the following 
form: 

 

f(x) = 
⏐Σ⏐–1/2

( 2π)n
 exp {– 

1
2 (G

–1 (F(x)) – μ)T Σ–1 × 

 

× (G–1 (F(x)) – μ)} ∏
i=1

n

 

⎩
⎨
⎧ 

 

d G–1
i (Fi(x

 i))

d Fi
 fi(x

 i)

⎭
⎬
⎫ 

 

 , (8) 

 

where G–1 (F(x)) – μ = G–1
i (Fi(x

 i)) – μi), fi(x
 i) = 

d Fi(x
 i)

d x i , 

i = 1, ... , n , and symbol T
 denotes the operation of 

transposition. 
Thus, performing the component–by–component 

normalization and accounting for the intercomponent 
relations, we obtain a parametric presentation of the 
function of probability density to describe the images to be 
recognized by the decision rule (1). 

When using expression (8) one should bear in mind 
that G i

–1(⋅) is a function inverse to the Gaussian 

distribution, which does not have a simple analytical form. 
However, accurate enough approximations are known both 
for the integral of probabilities, and for the function inverse 
to it. For example, the λ–distribution, introduced by 
J. Tyuki3 approximates the inverse function of continuous 
distributions to a high degree of accuracy 
 

y = G–1(z) = λ
1
 + (z

λ
3 – (1 – z)

λ
3) / λ

2
 , (9) 

 

where z ∈ [0, 1], the average and the median of Y coincide 
and are equal to λ

1
 , λ

1
 = M[Y] (M is mathematical 

expectation), λ
1
 is the parameter of locality, λ

2
 is the 

parameter of scale, and λ
3
 is the parameter of shape. 

In particular, to determine the inverse function of a 
normal distribution with an average μ and variance σ2, we 
have 
 
λ

1
 = μ,  λ

2
 = 0.1975/σ ,  λ

3
 = 0.1349 . 

 
Besides, to determine the multidimensional function of density 
f(x) by formula (8) one needs to reconstruct one–dimensional 
probabilistic characteristics Fi(x

 i), fi(x
 i), i – 1, ..., n . 

To solve that problem from selected data it is natural 
to use the system of Pearson curves4 or to approximate the 
selected distributions by splines. The described procedure of 
constructing the functions of density for a decision rule for 
image recognition is significantly simplified if one uses 
already known normalizing transformations.4,5 

Among such normalizing transformations one should 
note those proposed by Johnson to approximate two wide 
classes of unimodular and bimodular distributions.5,6 The 
procedure of reconstructing parametric function may then be 
presented as a two–step operation. 

At the first step the Johnson transformation is selected 
for each feature, which is in agreement with the true 
unknown distribution to a sufficient degree of reliability, 
while at the second one estimates of the coefficients of 



 

correlation between the features are made to describe 
statistical relations between the transformed components. 
After that the joint distribution of the components of the 
random vector is presented in standard form. 

Consider the first stage in more detail. Let X ∈ E1 be 
a random variable, for which we try to choose the Johnson 
distribution. It may be expressed in a general form 
 
ξ = γ + δ τ(x; ε, λ) , (10) 
 
where parameters γ, δ, ε, λ, and the function τ(⋅) are chosen 
so that ξ has a normal distribution N(0, 1) with zero 
average and a unit variance. Johnson suggested the 
following three families of functions τ(⋅): 
 

SL : τL(x; ε, λ) = ln ( )x – ε
λ  ,  x ≥ ε ,  

 

SB : τB(x; ε, λ) = ln ( )x – ε
ε + λ –x

 ,  ε ≤ x ≤ ε + λ , (11) 

 

SU : τU(x; ε, λ) = ln 
⎝
⎜
⎛

⎠
⎟
⎞x – ε

λ  + ( )x – ε
λ

2

 + 1  , 

 

–∞ < x < ∞. 
 

Knowing the empirical estimates μ
∧

i of the true central 

moments μi (i = 2, 3, 4) of the initial random variable X, 

one may decide what family of functions τ(⋅) is preferable to 
describe the distribution X, provided the sample X

1
, ... , Xn 

of size N is preset. 
The technique of choosing the functions τ(⋅) is based 

on estimating the index of asymmetry β
1
 = μ

3
2/μ

2
3 and the 

relative index of excess β
2
 = μ

4
/μ

2
2 . The technique consists 

in the following. If a curve, given by the parametric 
equation 

 

⎩
⎨
⎧

 

β
1
 = (ω – 1) (ω + 2)2 ,

β
2
 = ω4 + 2ω3 + 3ω2 – 3 ,

 (12) 

 
is plotted in the plane (β

1
, β

2
), one should choose the SL 

approximation (the lognormal distribution) for those 
distributions, for which β

1
 and β

2
 lie either on this curve or 

close to it; if β
1
 and β

2
 lie above the SL line, then the SB 

approximation should be used, and in case of β
1
 and β

2
 

lying below this line one should use SU Johnson 

approximation. 
To use Eq. (12) in practice, it is convenient to express 

ω using the first equation as follows: 
 

ω3 + 3ω2 – (4 + β
1
) = 0 , 

 

and to find the real root 
 

ω
1
 = 

3
2 + β

1

2  + ⎝
⎛

⎠
⎞2 + β

1

2

2

 – 1 + 

 

+ 

3
2 + β

1

2  – ⎝
⎛

⎠
⎞2 + β

1

2

2

 – 1 – 1. 

 

By substituting ω
1
 into the second Eq. (12) we 

determine the sign and the value of the discrepancy with β
2
 

 
ε
0
 = β

2
 – (ω4

1
 + 2ω3

1
 + 3ω

1
 – 3) . (13) 

 
If we now chose ε

1
 for the admissible discrepancy, then 

the algorithm for choosing the family of distributions may 
be described as follows: 

if Eq. (13) yields |ε
0
| ≤ ε

1
, we choose the family of 

distributions, related to the equation of curve (12), i.e., SL ; 

if |ε
0
| > ε

1
, and ε

0
 is negative, then the SU family is to 

be chosen; 
if ε

0
 > 0, then the SB family is to be chosen. 

After specifying the form of the function τ(⋅) in the 
expression (10) the Johnson distribution describing the 
density of probability of random variable X have the form 
 

f(x) = 
⏐d τ′x(x; ε, λ)⏐

2π
 exp

⎩
⎨
⎧ 

 
– 

1
2 (γ + δ τ(x; ε, λ))2

⎭
⎬
⎫ 

 
, (14) 

 

where  
 

τ′x(x; ε, λ) = d τ(x; ε, λ)/d x . 

 
Assume that the parameters of Johnson distributions 

are somehow set. At the second step of the approximating 
procedure X is a vector, X ∈ En, X = (X1, ... , X n)T each 
component of which is transformed into the component of 
vector ξ ∈ En by formula (10). To reconstruct the 
intercomponent relations between the random values ξi and 
ξj of the vector ξ, we use the estimates of coefficients of 
correlation, from the teaching sample X

1
, ... , XN ; here N 

is the size of the sample, and X ∈ En  
 

rij = 
1
N ∑

k=1

N

 ξ i
k ξ

j
k , (15) 

 

where 
 

ξs
k = γs + δs τ(Xs

k; ε
s, λs) ;  s = i, j ;  i, j = 1, ..., n . 

 

Then, following the assumed normal character of 
distribution, the joint distribution of the components of 
vector ξ will be written as follows: 
 

f(ξ) = 
1

(2π)n/2 ⏐R⏐1/2 exp 

⎩
⎨
⎧

⎭
⎬
⎫ 

 

– 
1
2 ξ

T R–1 ξ  , (16) 

 

where R = (rij) is the matrix of correlation composed of 

coefficients (15). Hence, the estimate of distribution of the 
initial vector X has the form 
 

f(x) = 

∏
i=1

n

 δi τ ′x(x
i; ei; li)

(2π)n/2 ⏐R⏐1/2  exp

⎩
⎨
⎧ 

 

– 
1
2 (γ + δ τ(x; ε, λ))T × 

× R–1 (γ + δ τ(x; ε, λ))

⎭
⎬
⎫ 

 

 (17) 

 

with the vector 
 



 

1 1 1 1 1( ; , )

.

.( + (x; , ))=

.

( ; , )n n n n n

x

x

⎛ ⎞γ + δ τ ε λ
⎜ ⎟
⎜ ⎟
⎜ ⎟

γ δτ ε λ ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
γ + δ τ ε λ⎝ ⎠

. 

 

Let us now consider the problem on estimating 
parameters of the families SL and SB of Johnson 

distributions. First, note that ε and λ have simple meaning: 
parameter ε gives the value of the lower boundary, and 
parameter ε + λ – that of the upper boundary of the random 
variable X. In many cases these parameters may be 
estimated from the physical meaning of the measured 
values, and also directly from the teaching sample. If 
parameters ε and λ are known, parameters γ and δ may be 
obtained using the technique of maximum likelihood. 

Let y = {X
1
, ... , XN} be the independent sampling values 

of the random variable X (N is the sample size). With the 
account of Eq. (14) the function of likelihood have the form 
 

L(γ, δ / y) = 
⎝
⎛

⎠
⎞δ

2π

N

 ∏
j=1

N

 τ ′x(Xj; ε, λ) × 

 

× exp

⎩
⎨
⎧ 

 

– 
1
2 ∑

i=1

N

 (γ + δ τ (Xi; ε, λ))
2

⎭
⎬
⎫ 

 

. (18) 

 

By differentiating L(γ, δ/y) by γ and δ, and equating 
these derivatives to zero, we obtain a system of equations 
 

γ + δ 
1
N ∑

j=1

N

 τ (Xj; ε, λ) = 0 , (19) 

 

δ2 
1
N ∑

j=1

N

 τ2(Xj; ε, λ) + γ δ 
1
N ∑

j=1

N

 τ (Xj; ε, λ) = 1 . 

 

Whence it follows that 
 

δ =

⎩⎪
⎨
⎪⎧
 

 

1
N ∑

j=1

N

 
⎣
⎡

⎦
⎤τ (Xj; ε, λ) – 

1
N ∑

i=1

N

 τ (Xi; ε, λ)

2

⎭
⎬
⎫ 

 

–1

,(20) 

 

γ =
⎩
⎨
⎧

⎭
⎬
⎫ 

 

 – 
1
N ∑

j=1

N

 τ (Xj; ε, λ) δ . 

 

Thus, defining the parameters of the families of 
Johnson curves from sampling data at the teaching stage, 
one may use the approximations of the unknown 
conditional functions of density (17) which are used for 
the Bayes decision rules of form (1) (see Ref. 6). 

Note, in conclusion, that, besides the quality of the 
multidimensional conditional functions of density (8) and 
(17), the quality of the obtained decision rule (1), 
determined by the empirical risk (2), depends on the 
mutual position of points of the teaching sequences. 
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