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Algorithm of reconstructing the phase front based on
smoothing two-dimensional normalized cubic B-splines
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Based on mathematical apparatus of smoothing two-dimensional normalized cubic B-splines the
algorithm for reconstructing the wave fronts of optical radiation has been synthesized capable of
effectively optimizing the nonstationary distortions in the presence of noise in the control channels. The
analytical expression has been obtained for selecting the number of elements of the Hartmann sensor
optimal in terms of providing a preset accuracy of reconstructing the wave fronts.

The potentialities of optical measuring systems,
owing to their high precision, are largely limited by the
conditions of propagation of optical waves in actual
material media. When propagated through the
atmosphere the optical waves are distorted due to
fluctuations of the refractive index. One of the effective
methods of decreasing the distorting effects of turbulent
inhomogeneities is the use of methods of adaptive
space-time compensation for the distortions of an
optical signal.

For this reason, to compensate for nonstationary
distortions of optical radiation, we use the systems
where the optical radiation phase is measured at
different points of the entrance pupil with the
subsequent formation of the wave front distribution
over the whole entrance pupil. At present, because of
the specific properties of the square-law detection, the
Hartmann sensors are used in optics that measure the
mean, over a subaperture, tilts of a wave front
proportional to the following values:
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where %k is the wave number, ¢ is the function
describing the phase disturbance; nf?y) is the output
noise of the corresponding channels of a quadrant-type
photodetector.

The  existing methods of  wave front
reconstruction!™3 have some drawbacks, which do not
allow achieving high precision of responding the
nonstationary distortions.

First, the use of polynomial approximation is less
effective than the spline-function approximation since
the number of residual loss constants for parabolic
polynomials exceed the number of splines of the same
power by a factor of 5 and for cubic ones — by a factor
of 18.4 Secondly, these methods were developed
without the consideration for the presence of noise in
control channels described by the Poisson distribution
law.5> Use of traditional optimal methods of nonlinear
filtration based on the Stratonovich multidimensional
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equation is impossible in this case due to the extremely
large bulk of calculations, which gives no way of
realization of such algorithms on a real time scale.

It should be stressed that simple algorithms of
constructing splines do not always allow one, because
of insufficient stability to the rounding-off operation,
to obtain high precision of the approximation function.
Therefore, to increase the accuracy of wave front
reconstruction their local and basis forms should be
used, and under conditions of significant measurement
errors the use of smoothing splines is most effective
allowing to compensate for anomalous outliers of
radiation measurements and the effect of noise.

Besides, with the availability of data on the noise
intensity or the prediction about the optical radiation
propagation along the path, the use of smoothing splines
enables one to increase additionally the accuracy by
choosing optimal values of the smoothing coefficients.
Therefore, to solve the problem on synthesis of the
algorithm, it is quite useful to make wuse of the
apparatus of smoothing two-dimensional normalized
cubic B-splines of the defect 1.

By these splines one usually® means the
normalized finite functions defined on a certain finite
area-carrier, coinciding on the subintervals formed by a
grid with some algebraic polynomials not higher than
the third power and doubly continuously differentiable.
In this case the normalizing factor equals to the
arithmetic mean of the steps on the small area where
the B-splines differs from zero.

Choosing the cubic B-splines for solving the
above-mentioned problem is based on the following
consideration. The structure function of an optical wave
phase propagated through the layer of a turbulent
medium is proportional to the linear coordinate raised
to the 5/3 power and is a continuous function
monotonically increasing over the entire domain of
definition. Since the exactness of smoothing is mainly
determined by the function evenness within the segment
between the spline nodes,6 the choice of the power of
the approximating function higher than 3, is inadvisable
because it provides only for a slight increase in the
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exactness. This fact is confirmed by the computational
experiments made by the authors.

The goal of this work was to synthesize the
algorithm of wave front reconstruction based on
smoothing two-dimensional normalized cubic B-splines
accounting for the presence of noise in the control
channels of an adaptive optical system and having high
precision characteristics.

Now we set the Hartmann sensor of the size
[ab]x[cd], consisting of NxM quadrant photodetectors
hy=R,/N, hy = Ry/M (where R,, R, are the sensor
size along the corresponding axes of coordinates), each
measuring the mean wave front tilts over a subaperture
in two perpendicular planes zox and zoy. The
photodetectors are characterized by a pair of indices; i
is the number of line and j is the number of column
(i=1, N, j=1, M). The measured values of partial
derivatives (1) correspond to the middle of the ijth
photodetector. Let us introduce, on the plane xoy, the
set of nodes of splines with uniform steps A, %, along
the corresponding coordinate axes

A ixg<xy=a<uxy<..<xy=0b<uxnN+,

Byiyo<yi=c<yr<..<ym=d<ym+. (2)

Considering the characteristics of measurements,
carried out by quadrant photodetectors, the phase value
at the splines nodes can be expressed through its partial
derivatives
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In this case the wave front sought can be
synthesized as a system of smoothing two-dimensional

normalized cubic B-splines of the defect 1 (Ref. 6)
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where b; ; are the coefficients of splines, By (x, y) is
the third-power B-splines, corresponding to the ijth
area.

To reduce the formula, we denote BY/(x, y) as BY’,
then in the general form the expression for B-splines
can be written as
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where n is the power of the splines.

After simple, but cumbersome calculations the
expression for the cubic B-splines takes the form
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The problem of smoothing will be solved by
minimizing the functional®
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where p and w are the smoothing coefficients; S; ;, ¢; ;
are the values of splines and the wave front phase at
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Fig. 1. The jth cross section of the B-splines carriers.

Now we consider an area [x;; x;+1]1%[y}; y;+1] and
define the coefficients of splines at the center of the
corresponding carrier function (Fig. 1), then for this
area we can write



D.A. Bezuglov and A.V. Sklyarov

Sl,] = fx fy bi+2,j+2 T gy fy bi+1,j+2 + fx 9y bi+2,]'+1 +
+ gy 9y bi+1,]’+1 + px f]/ bi,j+2 + fx Py bi+2,]’ +
T Px gy bi,j+1 T gx Py bi+1,j T Px Py bi,j +
+ Wy fy bimy ja2 T [x @y bisp 1+ Wy gy bimg jer F
T gx @y bivg jo1 T Wy py bi—g ;T
+ ppwy by jq + wy wy by jq. )

Now we introduce normalized coordinates for
splines equal to X, = (x = x) /hy, X, = (¥ = y;) /hy on
the axes ox and oy, respectively. After simple
arithmetical transformations, and grouping relative to
the coefficients of splines, and substituting in Eq. (4)
we obtain an analytical expression for the splines
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where
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In this case the minimized functional is written as
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Calculating the integrals and conducting the
transformations, complying with the dimensionality of
the functional components, we obtain
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Vy = (Fjq — 2F]- + Fjp), V3= (Fjuy + 4F; + Fjy);
Wi =(Gja = 3Gjsq + 3G; = Gjy),
Wy = (Gjs1 = 2G; + Gj-1), W3 = (Gjsy + 4G + Gj—q);
Uy = (Ljsy = 3Ljrq +3L; = Ljy),
Uy=(Ljry = 2Lj + Lj—y).

To find the coefficients of splines (9), that minimize
the functional (11), it is necessary to calculate its partial
derivatives for every coefficient and to equate them
with zero. As a result we obtain the system of (N + 2)
by (M + 2) linear equations of the form QA = Z. The
matrix of coefficients Q has a clearly defined diagonal
form and well conditioned. When solving this system of
equations using one of the known methods,6 we
calculate the values of unknown coefficients.

In solving practical problems, we need, as a rule,
to realize the wave front reconstruction with a preset
accuracy. This is achieved by selecting a step of a
splines grid taking into account the characteristics of
the smoothing function and the corresponding estimates
of the smoothing error. Since the step size is strictly
bound with the sizes of a quadrant-type photodetector,
this enables one to select the number of sensor elements
optimal from the viewpoint of providing the preset
accuracy of the wave front reconstruction. Considering
the local characteristics of phase perturbations due to
the dimensions of inhomogeneous medium of propagation,
the size of the grid step, providing the minimum error
of reconstruction over the corresponding coordinates,
can be determined from the following expressions6:
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where € is the error of determination of the splines;
| D208 (x, y)"[xi’xfr”’ | D9-2S(x, y)"[yi'yiﬂ] are the
norms of the second partial derivatives of the splines in
the corresponding intervals.

The peculiarities of the Hartmann sensor design
make the application of irregular grid too difficult,
therefore an expression for optimal number of sensor
elements can be written as
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Thus, Eq. (13) defines the number of elements of
the Hartmann sensor, necessary for providing the preset
accuracy of reconstructing of the wave front.

Thus, based on the Eq. (9) obtained for the
smoothing two-dimensional normalized cubic B-splines,
we have developed an algorithm of reconstruction of
the optical radiation wave front in the presence of noise
in the control channels.

It has been found that Eq. (13) for selecting the
number of elements of the Hartmann sensor is optimal
for achieving the preset accuracy of compensation for
the nonstationary distortions.

The proposed algorithm of wave front
reconstruction was realized in the MATHCAD-7 PRO
for the case of N = M = 5.

The numerical experiment has shown that the
application of mathematical apparatus of smoothing two-
dimensional normalized cubic B-splines enables one:

— to efficiently consider for a stochastic signal
nature at the output of a Hartmann sensor;

— if a priori information about the character and
intensity of noise is available, it is necessary to
operatively introduce a correction in the reconstruction
algorithm providing for an additional improvement of
the quality of responding the nonstationary distortions.
In this case the accuracy of reconstruction is determined
by the error of approximating the function O(4"*!) and
slightly decreases under conditions of an intense noise.

In the computer experiment we tested the effect of
selecting the coefficients of smoothing and breakdown
of separate quadrant photodetectors on the quality of
functioning of the proposed algorithm. Figure 2 shows
the calculated results on the error of approximation of
the wave front at high and low signal-to-noise ratios at
the output of the Hartmann sensor. Analysis of
variation of smoothing coefficients indicates that the
use of p and w<1 results in degeneration of the
smoothing splines to the interpolation one. In this case
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the smoothing splines, even in cases of low signal-to-
noise ratios, provides for a 1.7 increase of the accuracy
as compared with the interpolation splines. In case of a
high SNR the selection of optimal values of smoothing
coefficients within the limits from 3 to 10 provides for
achieving the best accuracy of the approximation.
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Fig. 2. The dependence of the error of wave front
approximation on the smoothing coefficient at low (@) and
high (b) SNR: (a) SNR =0 (curve 1) and 10 dB (curve 2);
(b) SNR = 25 (curve 1) and 30 dB (curve 2).

In this case the absence of measurements from
several quadrant photodetectors practically does not
affect the quality of reconstruction.

In conclusion, it should be noted that the
proposed algorithm can be used in calculations and
processing of other spatially-distributed parameters, and
the method of calculation of smoothing two-
dimensional normalized cubic B-splines can be extended
to calculation the splines of higher orders.
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