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Differential and statistical invariants of a wavy surface.
Part 2. Properties of a Gaussian surface
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It is shown that the spectrum of a Gaussian surface has only the second-order rotational axis, and
its moments of higher than the second order are degenerated in such a way that only three of them are
independent and only two invariants are nonzero. The conditions for decomposition of the spectrum into
one-dimensional systems are revealed, and the joint statistical distribution of the mean and differential
curvatures at horizontal surface points is found. Within the framework of the Gaussian model, a simple
optical method is suggested for simultaneous remote measurement of the second- and fourth-order

invariants of spectral moments.

Introduction

In Ref. 1, we have considered the general theory
of invariants of a wavy surface, which is interesting
from the viewpoint of surface development. At the same
time, it forms the theoretical prerequisites needed for
rigorous justification and development of remote optical
methods for sea investigations. This paper is a
continuation of Ref. 1. Here we consider the statistical
properties of the Gaussian model of a surface, which
presents the greatest practical interest in the theory of
sea roughness.

As is well-known, in a wide range of conditions,
the wavy sea surface can be thought roughly Gaussian
providing the statistical distributions of its derivatives
are described by the normal law. Significant deviations
from the Gaussian statistics are observed only in the
near-shore zone (in shallow water) and under the
conditions of developing roughness in deep water, when
the surface is significantly inhomogeneous and a wave
collapse occurs. For the Gaussian surface, the
requirement of the external symmetry is connected with
invariance of the spur and determinant of correlation
matrices. It will be shown that this causes specific
degeneration of invariants (even moments) and imposes
rigid requirements on the symmetry of the spectrum. In
this paper, we consider also the characteristics of the
angular structure of the two-dimensional spectrum at
its decomposition into some simple (one-dimensional)
systems and derive a joint statistical distribution of the
mean and differential curvatures at horizontal surface
points.

To apply the theoretical results to practical
investigation of the wavy surface, the paper suggests a
simple optical method for simultaneous remote
measurement of invariants of the second- and fourth-
order moments of the spectrum.
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1. Degeneration of invariants and
spectrum properties

For the Gaussian surface, the even moments of the
p + g = 2n order form a symmetric correlation matrix?

My, 0 Myp—1, 1 e My
Mmop—1,1 Myp-2,2 - My— p+

My, =1 . . . (1)
Mmy n My—1, n+1 my, on

in the statistical distribution of derivatives of the nth
order. However, for any matrix, its spur and
determinant
n+1
Won = Sp MZn = Z (MZn)rr' A2n = det MZn )

r=1

are rotation invariants.3 The presence of additional
determinants expressing the requirement of the external
symmetry  indicates  that  degeneration  (linear

dependence) of moments is possible. In such a case, the

(r) (r)

components Hjy, and hj, of some invariants ng)

vanish (hereinafter U,, and Vé:l) denote invariants, as
accepted in Ref. 1, where the equations for them are
given up to the sixth order).

Since Ay, is a nonlinear function of moments,
degeneration is determined by only the matrix spur. For
the second-order moments we have py= U,.
Consequently, in this case all three moments are
independent, and the direction moment is described by
the well-known equation?:

2my(9) = iy + (3 — 489)" Pcos [20 = 03],
oSV = arctan [2my1/ (mog — mg)]. 3
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However, for moments of higher orders py,# Uj,. From
comparison of Uy and py, it follows that (myy + mg,) and
myy are invariants. Examining transformation of the
moments at rotation through the angle ¢, we can show
that

(miyg + mog) = (mygg + moyg) + hff) sindg +
+ (1/2)H£2) sin®2¢, 4

where the prime stands for parameter values in the
turned coordinate system. It follows from here and
from equations for the components H?) and hff)

(Ref. 1) that
HP = 1P =0; myz=mgq, myg + mog = 6my, (5)

that is, only three of five moments are independent.

Taking myg, mo4, and mgq as independent moments, we

can replace Uy and Vfi1)

invariants

with simpler independent

myy = (mgg + mog) /6, 8= mgq mos — 4m3y, (6)

which allow any others connected with the fourth-order
moments to be written. In particular, using the results
of Refs. 1 and 4, we find

Uj = 8myy, Wy = Tmyy,

VD =2 (9m3y — 8), Aq=myy (65— mdy),
<ud> = <vl> = Py=2myy, <up>=3P3=12m3,,
<K3>=5=5+3m3,

<ul> - <ol> =40y = 4m3, = P3, (7)

where Py, Qq, and S are the designations of invariants
accepted in Refs. 9 and 10 at analysis of the statistics
of radiation reflected from the surface; ug, vy, and K
are the mean, differential, and total (Gaussian)
curvatures at horizontal points. With allowance for
Eq. (6), the fourth moment of the one-dimensional
spectrum can be represented as

my(@) = 3myy + (9m§2 -2 cos [2¢ — (pﬁ“],

(pg) = arctan [4msy / (myg — mog)]. (8)
Degeneration of higher-order moments can be

easily found using the condition H?) = hfiz) =0 and the
recurrence formulas for derivatives of the correlation
function (see Egs. (31) in Ref. 1). As a result, for
moments of the sixth order we have

Hér) = hér) =0 (1’ =2, 3), my5 = msq1 = (5/3)7)133,
15myy = 2m60 + myg, 15myy = mego t 27’)’106, 9)

that is, here, as above, only three moments are
independent (mgg, mgg, ms1). In this case, (mgy + mog)
and (myy + my,) are invariants, and the direction
moment is determined by the equation

AN. Dubovik

2mg() = (mgy + mgg) +
+ [Gngy = mog)* + 36m341"? cos [20 = 96”1,
(p((31) = arctan [6msy/ (mgg — mog)]. (10)

Then, continuing this consideration, we can make
certain that in the general case

a2 =0, #?=0 Q<r<n). a1

Thus, we have shown that moments of the higher
than the second order are degenerated in such a way
that only three of them are linearly independent and
only two invariants Uj, and vgi,) are nonzero. In this
case the degeneration (linear relation between the
moments) is described by Egs. (11). The similar
conclusions are apparently valid for even derivatives of
the correlation function as well.

Degeneration of the moments significantly
simplifies their angular dependence, which at Vgil) =0
is determined only by the functions cos2¢ and sin2e.
This means that the spectrum of the Gaussian surface
has only the second-order rotation axis, that is, it
cannot have incidental peaks, besides peaks in the given
direction and the direction opposite to it. As is well-
known, the developed spectrum of wind-induced waves
has the same symmetry, and this is one of the
arguments in favor of the Gaussian model of a wavy
surface. Equation (11) determines the following
properties of the spectrum:

1) moments with transposed odd indices p and ¢
are identical:

Mgy = my, (p and g are odd); (12)

2) moments mys o and sums of moments with
transposed even indices are invariants, and the
following relations are fulfilled:

ok 2k _
Mop—ok, 20 + Mo, 221 = [Cp/ Coyl (may o + Mg, 2,) =

= okt 2 on 2k Uy 0<k<EMm/2),  (13)

where E(2) is the integer part of z. With allowance for
these properties, the spectral moments with respect to the
direction ¢ can be represented as

m2n((p) = (1/2) P2n [1+ €, COS (2(p - (szz) 1,

& = an/pva

03 = arctan [(2n) Moy, 1/ (Mo, g = mg, 2,01,

Pan = Moy, 0 + my, 2ns
2 2 2 9
Gon = (moy o = mo, 2,)° + 40" myy—q 1,  (14)

where the invariants p,y, and ¢y, can be expressed in

terms of Uj, and Vgil). The invariants g, introduced
here represent the anisotropy coefficients of the nth order
and play an important part in the surface statistics. In
particular, they characterize the angular orientation
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(sharpness) of the spectrum and vanish in the isotropic
case.
If the spectrum is symmetric about the direction

¢g (principal wave direction), then the conditions

(pg,? = 20 are fulfilled, and we have the extra relations

sin 200 = A5/ VD = D /v = = 18 VD, (15)

from which it follows that all the relations hgi)/hgg),
1D /HSD are invariants as well (r, s =1, 2, 3,...).

As is  well-known, the condition Ay, =0
corresponds to decomposition (degeneration) of the
spectrum into 7 one-dimensional spectra.? This means
that for the non-degenerated (two-dimensional)
spectrum the following condition should be fulfilled:
0 <g, < (g)max, Where (g,)nax < 1 is the solution of
the equation Ay, = 0. Consider this issue in more detail
and find some (g,)y.x. Rearranging columns and rows
in the correlation matrix Ms,, we can represent it in

the form3:
A2n B2n
Moy = | oo Do ’ 16)

where, with allowance for moment degeneration, the
square submatrices Ay, and C,, include only the
moments my, o and mgy 2, Wwhile the submatrices By,

and B5, (not necessarily square) include only the

moments my, ¢ 1. In the direction ¢ = ®§:1)/2 (or ¢ for
the symmetric spectrum) we have

Mmop—1,1 = 0, Mmyp, 0 = (mZn)max =(1+ 871) P2n/27
my, on = (m2n)min =(1- Sn) p2n/27 7

where (my,)nax and (mo,) i, are the moments in the
direction specified above and in the direction opposite
to it. With allowance for this, the condition of
spectrum degeneration can be written as

A2n = (dEt A2n) (det C2n) =0. (18)

Restricting our consideration to n <4, let us find
determinants of the submatrices:

det Ay, det Cy = (py3/2) (1 £gy),
det A5 = (ps/6)% (8 — 9e3), det Cy = py/6,
det Ag, det Cg = (pg/15)? (483 + 6e5 — 9),
det Ag = (2pg/35)° (64 — 75¢3),
det Cg = (pg/14)* (4 — €3). (19)

Herefrom we have that spectrum decomposition
corresponds to the following values of the anisotropy
coefficients:

(EDmax = 15 (82)max = \/8/3 = 0.9428,
(€3)max = 3/ (1 +4/5) = 0.9271,
(e)max = 8/A[75 = 0.9238. (20)
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It should be noted that (g5)p.¢ is equal to cos(8,/2),
where 3 = 38°56' is the angle of divergence of ship
waves.” In our opinion, such coincidence of two surface
characteristics is not accidental, but discussion of this
issue is beyond the scope of this paper.

2. Statistics of surface curvature

Now let us find the joint density of the
distribution  W5(ug, vg) of the mean and differential
curvature at horizontal surface points (this function for
the isotropic case was obtained in Ref. 4). As usually,
we start from the distribution of the second
derivatives2:4:

1
W3(&20, Ci1, Co2) = TRV x
1 3 3
X exp —EZ 2By &gl 1)
4 P, q=0

where (&1, &, &) = (Ca0, L1, Go2) and By, is the
algebraic cofactor of the matrix element (My),, in the
determinant A4. In this case we have!

€20, 02 = ug * vy cos (29 = ¢2),
C“ = 7p sin (2(P - (Pz), (22)

where @y = arctan [(2811,/ (&9 — &o2)]. Assume that the
axis x coincides with the direction (pg) /2. Then
substituting Egs. (22) into Eq. (21) and taking into
account the fact that the Jacobian of transformation of
variables is equal to 4 | vy |, we obtain

W 00, 6) = —— 2
3\, €0, 4t (nmgz p)1/2
|: QQug — 3ey vy cos 1) 0(2) J
x exp | — 16p7122 - Yriny | (23)

where the following designations are introduced:
p=1-(9/8)e5=1-[e5/()x] and ¢=20— ¢y
(0 <t <m). Tt can be shown that

f exp [— (o — B cos %] dt = exp [~ o — (52/2)] y
0

T

x f exp [(B2/2) cos 2¢] cosh (208 sin ¢) d¢. (24)
0

The second integral can be calculated using the
well-known equations3:

cosh(zy sint) =Iy(z)) + 23 (—1)"I,,(z¢) cos2nt, zy = 2ap,
n=1

T

f exp (25 cos 2t) cos 2nt dt = nl,(29), 5 = B2 /2, (25)

0
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in which I,(z) is the r-order Bessel function of an
imaginary argument. Thus, taking the integral (23)
with respect to ¢, we finally have

|20

—// X
4(nmiy p)!/2

WQ(UO, U()) =
2 2
ug + (1 +p) v
X exp |:— T oy F(ug, vy), (26)
where
F(u(), Z)()) = 10(21) 10(22) +

£ (D Iy (z) 1(2):

n=1
21 = Bey/dpmyy) uy v, 23 = [(1 = p) /dpmys] v3. (27)

In the isotropic case p=F =1, therefore the
distribution (26) coincides with that obtained earlier in
Ref. 4. Apparently, using Wy(ug, vg), we can find any

moments of the invariants uy, vy, and K, = u(z) - v%.
The values of some of the moments are given in
Eq. (7). At the same time, after changing variables,
from Eq. (26) we can easily obtain other distributions,
such as  Wylsg, Ko) or  Wylky, kyy), where
so = k1p/ koy is curvature anisotropy, kiy and kyy are
the principal curvature values at horizontal surface
points.

3. Measurement of invariants

Since invariants of spectral moments depend only
on external parameters, their measurement is a
convenient method for studying the wave variability
under the effect of wind and currents, as a result of
interaction of surface and deep waves, in the presence
of pollutant and surfactant films, and so on. Of
particular interest in such studies are remote optical
methods, which can be used for solution of a wide
range of scientific and applied problems.6-10

It should be noted that measurements of higher
invariants give the integral information about rather
small variations of the spectrum in the high-frequency
(capillary) region, where direct measurements are
usually very difficult and unreliable. The results
presented in Ref. 1 and in this paper allow us to give
the exhaustive theoretical justification to already
existing and new remote methods. In particular, as
shown in Eq. (7), the invariants Py, Qy, S appearing in
Refs. 9 and 10 can be rather easily expressed in terms
of the invariants myy and 8.

Assuming that the wavy surface is Gaussian,
consider a simple optical method for simultaneous
measurement of the second- and fourth-order invariants.
This method is based on counting the number of mirror
(reflection) surface points that are characterized by a
certain slope angle 0 in the preset direction ¢. In
practice, this method can be realized as counting the
number of optical signals from reflection points when
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scanning the surface by a thin (1-5 mm in diameter)
continuous-wave laser beam. Note that in lidar systems,
which unite the source and the receiver of radiation in
a single device, signals backscattered from the surface
are received, and the angle of laser beam deflection
from the vertical (in the scanning direction @) coincides
with the slope angle of mirror points. Below we assume
that the measurements are conducted with a two-
channel lidar having two independent (vertical and
slant) optoelectronic systems for simultaneous emission
of laser radiation and reception of reflected signals.
Such a lidar design is most convenient for realization of
the method suggested here.

As was shown in Ref. 2, the mean number n(op, 6)
of reflection points per unit length of the surface in the
direction ¢ is determined by the equation

n(g, 0) = N(¢) exp [~ tan®0 /2my(9)];

NGo) =L [my(o) /my(@]' 7, 28)

where N(¢) = n(p, 0) is the mean number of horizontal
points (wave peaks and dips) per unit length.
Substituting, according to Eq. (14), direction moments
my and my by their representations in terms of
invariants, we obtain

1+ ¢y cos2o

1/2
N(o) = Q[ J 0= 29

1+ g1 cos2e

where the angle ¢ =0 corresponds to the principal
wave direction. Denote then

Oy = ln(Nm/nm)’ Ny = N((pm)’ Nm = n(q)mv 0),
Q=01 +45°(m—-1), 1<m<3, (30)

where m is the number of measurement (scanning).
Consider the situation that the direction of waves is
well-known (for example, at studies in a watercourse or
a tray). Assuming in this case that ¢{ =0, we have

Py = tan®0 /oy = (aq + ag) tan’0 /200,
2 ~2
pa =7 Q" pa,
2 N2 _ 2 2
Q"=N3= (N1 a3z + N3 OL1)/(OL1 + (13),
g1 = (ag — ay) /(oq + az),
&= (NTaz — N3 ay)/(Nfog+ Njay). (31

Consequently, here it is sufficient to carry out the
surface scanning in the directions ¢,, = 0, 45, 90° with
respect to the principal wave direction.

However, in field measurements, the principal
direction is usually unknown. Keeping this fact in
mind, for an arbitrary angle ¢; we have

po = (og + ag) tan26/20c10c3, Ps= n° Q2 P2,
Q% = (VT az + N3 o) / (g + at3),

gr=A/ay (g +a3), & =B/ay (N% o3 +N§ o),
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cos 291 = oxoz —oy) /A = 0p(NTas— N3ay) /B, (32)

where the coefficients A and B are determined by the
equations

A% = 40?3 + 203 (of + af) — dayonas (o + o),

B? = 40} o} N3 + 203 (o N4+ o} ND) -
~ daqopog N3 (o N3 + o ND). (33)

Thus, in the general case, all invariants of the
second and fourth orders along with the principal wave
direction can be determined by scanning the surface in
three directions with the interval of 45°.

The obvious advantage of the proposed method is
the simplicity of the recording system, which, operating
in the key mode, only counts light signals without their
analog processing. To obtain the high spatial-angular
resolution needed to separate signals from neighboring
reflection points, the receiver’s filed of view A6 should be
taken rather small based on the estimate A0 <d/H,
where d is the spatial resolution (d ~ 1-5 ¢cm), and H is
the lidar height above the surface. Besides, the lidar
receiver should provide for reliable recording of optical
signals with the intensity varying by four to five orders of
magnitude. Note also that the rate of signal
accumulation is proportional to the scanning rate (lidar
speed), and in the slant channel of the lidar it also
significantly depends on 6.

Conclusion

In this paper, it has been shown that at the
Gaussian statistics of the surface the higher than second
spectral moments and the higher than second
derivatives of the correlation function are degenerate,
only three of them are linearly independent, and only
two invariants Us, and V%L) are nonzero.

As a consequence, the spectrum of the Gaussian
surface has the second-order rotation axis and is
characterized by symmetry properties of the moments
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given by Eqgs. (12)—(14). All these peculiarities should
apparently be taken into account in theoretical models
or empirical approximations of the established
(developed) spectrum of sea roughness.

Some limiting values of the angular structure
(anisotropy coefficients) of the spectrum corresponding
to its decomposition into some simple (one-dimensional)
systems have been found. A joint statistical distribution
of the mean and differential curvatures at horizontal
surface points has been obtained.

Within the framework of the Gaussian wave model,
a simple optical method that allows simultaneous
measurement of the second- and fourth-order moments
has been suggested. It has been shown that for
measurements of the invariants it is sufficient to scan the
surface in three directions with the interval of 45°.
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