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Some nontrivial results allowing the molecular and/or spectroscopic parameters of isotopic
modifications of different-type polyatomic molecules to be related are reviewed. The results were
obtained based on compilation of the extended local mode approach and the general theory of isotopic

substitution.

The information about the isotopic dependence of
spectroscopic and molecular parameters of polyatomic
molecules is of particular importance for solution of
numerous practical problems in high-resolution rotational-
vibrational spectroscopy. The need in establishing
isotopic relations between spectroscopic parameters was
noted by many authors (see, for example, Refs. 1, 2
and bibliography therein), because such relations would
allow one to predict the structure of excited states for
isotopic modifications of different molecules, to analyze
their weak, still unstudied bands, and so on. This paper
is devoted to the theory of isotopic substitution
developed for XH, and XHs molecules, in particular, of
H,O, H,S, PHj, and others that are of interest for
atmospheric optics.

It should be noted that the general isotopic
substitution theory developed earlier3 works well only
in the case of substitution of heavy nuclei such that

| Gny - my) /my| I or the substitutions of light
nuclei that do not change the symmetry of a molecule.
In the case that, for example, hydrogen nuclei are
substituted or the molecular symmetry changes, the
results given by this theory are either too cumbersome
or hard-to-obtain. At the same time, the efficient
spectroscopic methods dealing just with molecules
including light nuclei are the local mode method
developed in the mid-80s and its modification — the
extended local mode method.4® In this paper, the
extended local mode approximation means the study of
molecules meeting the following three conditions:

1) the atomic mass ratio my /My is small;

2) the equilibrium angle between the bonds X-H-X
is close to ©/2;

3) the interaction of stretching vibrations with
bending ones is neglected in the potential function (the
parameter f,, is small).

It is an important circumstance that the
knowledge of molecular constants is a key point in both
the general isotopic substitution theory3 and in the
extended local mode method.4™® Consequently, the
possibility of obtaining these constants within the
framework of the local mode approximation in a simple
form for the main isotopic modification allows one to
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hope for the possibility of their determination in a
simple form for other isotopic modifications as well.
Thus, to find the relationships between
spectroscopic constants of isotopically substituted
molecules, we should remember the conditions, the
molecular constants Iy, (and, consequently, ambiguity
parameters siny;) should meet!0:
Eckart conditions

> iy, =0, (1)
N
Zm}v/z UnonT$op — INpiT R0 ) =05 @)
N

normalization conditions

Zthxk INop =8 A#EQ 6))
Na

conditions for second derivatives of the potential
function with respect to normal coordinates

Wy, = 0%V / 8g;,0q,) =0, L = p. (4

It should be noted that the number of constants
Inoo. is equal to the number of equations (1)—(4), from
which they can be determined. However, in practice the
symmetry properties of a molecule are usually used in
place of Eqgs. (4). These properties give the
relationships between the Iy,; parameters, which are

then used in Egs. (1)—(3). The left-hand sides of the
Egs. (4), in this case, are identically equal to zero, and
the total number of non-zero equation (4) determines
the corresponding number of the Iyq; constants, which

are declared to be the empirical parameters siny;,
through which all other [y constants are expressed.

Summarizing the above-said, it can be mentioned
that the problem on the properties of the ambiguity
parameters siny; should be solved through analytical
solution of Egs. (4). In the simplest situations (XH,
molecules of Cy, symmetry and XHs molecules of Cs,
symmetry), investigations into this field are described
in Refs. 7-9. Under conditions meeting the local mode
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approximation, simple results were obtained for the
ambiguity parameters of the considered molecules:
(a) for XH;y molecules of Cy, symmetry

sin?y =1, y:i(2+n£j, where n =0, +1, £2, ..., (5)
4

2
(b) for XH3 molecules of C3, symmetry

\J2 cosy = siny or A[2 siny = — cosy, (6)
\ﬁ sind = 4cosd or /2 cosd = — 4sind. 7)

Based on this, extremely simple relationships
between Iyy, were found. In particular, for the XH,

(C,,) molecule it was obtained? that

o1 = ~l3,0 = —lyet = ~l3e1 = lopp = —l3,0 = Iyyn =
=3 = ~lz=—lg3=lz=-ls3=1/2, (8
lNyk = 0 and lum = 0 (9)

The above reasoning, it its turn, gives a lot of
earlier unknown information, for example, about
numerous relationships between different molecular
and /or spectroscopic parameters for some types of
molecules meeting the conditions of the local mode
method.89 The above approach was used for further
development of the extended local mode method,
namely, for the development of the theory of isotopic
substitution in molecules including hydrogen atoms and
meeting the local mode approximation.

As was emphasized above, the general results of
the extended local mode method can be easily obtained
based on analysis of the [y constants. Consequently,
in studying properties of isotopomers, we should first
determine the corresponding parameters of the
substituted molecule. As was shown in Ref. 3, in the
general case the Ik, constants of the substituted

molecule can be presented in the form

1/2
, m
le?» = ZKgLy [_'N] lKocp B?»u' (10)
an my

The indices N, K, L here denote the atoms of a
molecule; the primed parameters correspond to the
substituted molecule; the indices o, B, y, 8 denote x, y
or z components of a vector parameter; A, w, v number
the normal vibrational coordinates; my and m); are,
respectively, the nuclei mass of the initial and
substituted molecules. The parameters Kg, (the
superscript «e» corresponds to the equilibrium nuclei
configuration) are elements of the matrix determining
rotation of the molecular coordinate system at
transition from the initial modification to the
isotopically substituted one. The parameters B, are the
elements of the matrix inverse to the matrix {ay,}, with
the latter determining the transition from the normal
coordinates of the initial molecule to the substituted
molecule. The matrix elements a;, are determined by
the equations3:
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Zakv ®py :Akp = Z ( ; JZN(X)\. lN(xw
N my

No

“an
ZAXVWVO”VH = OLMLWL,I’

v

leading to the secular equation det(AW — W’) =0,
where A is the matrix with the elements A4;,; W and

W' are the diagonal matrices with the elements
Wiy = co% 8y and W, = co;? 8y, correspondingly; o
and o, are the harmonic frequencies of the initial and
isotopically substituted configurations. The parameters
KS’W are determined from the conditions

ZK;ﬁ Kg = ZKgu K&y =8, (12)
o o
D Jgs Kb, = 1 Ky (13)
B

where I'y(; are equilibrium moments of inertia of the

isotopically substituted molecule, and J f;B are determined
by the equations:

e _ e
ap = Zsavx Epdy Jys
8y
e _ 7€ _ A e e
Jys =gy = ZmNTNers - (14)
N

’ e r.e ’
_ ZmKrI<Y27nLrLS /ZmN.
K L N

Here 74, are the Cartesian coordinates determining the
equilibrium configuration of the initial molecule in the
molecular coordinate system. It is seen that Kgy can
also be considered as eigenvectors of the inertia tensor
]fxf, with the eigenvalues I:;;.

For further analysis, it is important to know the

isotopic  relationships  between the anharmonic
parameters3:
1/2
00,0
/ = A
N
r<psy v\ ARV
X kxuvaxwduu'o{vvr +
/ 2
h W= .
+| — R oti;LrOLI, ‘. (15)
2nc (o) 0,0,/ 2 Y
i (xryurvr) r nPv

All parameters of Eq. (15), except for Otflrvr, are defined
above, the k; , parameters are anharmonic force
constants corresponding to the dimensionless normal
coordinates. The parameters ocﬁ/vr are also known, but
they are expressed through much complicated functions
of molecular parameters, which are omitted here (the
corresponding equations can be found in Refs. 2 and 3).

2> and X denote summation over all
Y Moy

The signs
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permutations of different indices from the set A’ p' v’
(in this case the condition p' < v’ is fulfilled for the
indices not separated by comma).

The XH, — XHD isotopic substitution

Consider now the derivation of isotopic relations
between different parameters of molecules in the case of
XHy; —» XHD isotopic substitution. As was noted
above, the first step in the investigation of substituted
molecules is determination of the Iy, constants.
Unlike the initial molecule, the most important task for
which was to determine the ambiguity parameter siny;,
in the case of the isotopically substituted molecule
there is no need in such analysis (which is a rather
complicated problem), because Eq. (10) allows the
I'vo. constants of the isotopically substituted molecule
to be obtained directly from the already known Iy
constants of the main modification. In the case of a
plane XH,; molecule of C,, symmetry for both the
rigorous and extended local mode approximation, the
sought constants have quite a simple form given by
Egs. (8) and (9).

To use Eq. (10), we should also know the
coefficients B but for their determination, we should
first solve the system of equations (11), that is,

determine the harmonic frequencies ©; of the
substituted molecule, as well as the coefficients Uy
from the harmonic frequencies and the Iy, constants of
the main modification. Within the framework of the
local mode model, the harmonic frequencies w{ and w3
of the main molecule meet the following equality
o1 =wn3=on (Ref. 7). Assume also that the atom H
substituted by D has the number 2 (that is, mi =M;
my=2m; miy=m; M=Myx, m=mpy).
Eq. (11) gives the following results:

Solution of

T é=3@m2, 03=0 (16)

for the harmonic frequencies and

1
Q= Togp =15, 0t33=0t13:iT,
2

21325 17)

aqy = o = o3 =az =0, axp

for the matrix {oy,}. The coefficients By, can be
determined as

1
Bi1 = — P13 = 1, [333:[331:i$y

, ()
B12 = B2t = B2z = B32 = 0, 522:i$~

As to KZB obtained from solution of Eqs. (12)—
(14), it can be easily shown that, because of the
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symmetry properties of the molecule considered, the
matrix {K g} has the form

cosy 0 siny
o0 1 0 |, (19)
—siny 0 cosy

where cot2y = — 4m,/M. It should be noted that, in
spite of the presence of the factor 4 in the equation for
cot2y, the angle 2y is close to —x,/2, if the condition
m/M <<1 is fulfilled. Thus, we have the following

nonzero elements of the matrix {K ZB}:

Kix:_Kffz:Kgx:K§2:1/\/E; K;y:1' (20)

Under these conditions, solution of Egs. (12)
leads to the following equilibrium moments of the
inertia for the substituted molecule:

I5=2ly 1y, =3l 17 =1, 1)

2
where I =mp;=15,=1%.= 1/2]Zy are the
equilibrium moments of inertia for the initial molecule;
p. is the equilibrium bond length. Thus, we get the
following relationships for the equilibrium rotational

re
constants B :

2B = B,; 3B, = B,; 2B = B,. (22)

Finally, after substituting Egs. (8), (18), and
(20) in Eq. (10), we obtain, for the [y constants of
the substituted molecule, that:

=1, I33=1,
Iyo = ~1/7[3, I3 =~[2/4[3. (23)
All other Iy constants are zero.
Knowledge of the [\, parameters allows us to

derive simple equations for the Coriolis Q;’fﬁ and

vibrational-rotational a&“ﬁ constants that determine
different spectroscopic parameters. In particular, the
equations for C;’fﬁ in the general case have the form?

Cih =D Eapy O Inpales (24)
By N

but become extremely simple at substitution of
Egs. (23):

Ci =143, ¢ =~2/43. (25)

Similarly, substituting equations for the constants
in the general equations for the vibrational-rotational

parameters a;L B (Ref. 2):
ai = 22 oy, EBdy sz Ny I (26)
oy,

we obtain quite simple results:
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dlxx=a’1yy=2'\/§ [i/Z’ a12xz _ arzx =—(2 _\/5/_\/3) 12/2’
' 1/2
ad! =ay =21y (27)

Nonzero equilibrium atom coordinates 7yx, in the
substituted molecule have the form

Ty, = T4 = Pes (28)

what follows from the isotopic relationships3

ZK (m —mg)riy

b
!
m
ZLL

where rf’\;y are the equilibrium atom coordinates of the

(29)

Ny = ZKBV p

initial molecule XH,.

It is known that the parameters of the effective
Hamiltonian can be expressed as functions of
fundamental characteristics of the molecule. Since the
latter are found with the use of the above isotopic
relationships, it is not difficult to determine the
spectroscopic constants for a substituted molecule as
functions of the fundamental parameters of the basic
molecule. Their following comparison with similar
equations for the main modification and with each
other yields various relationships between spectroscopic
parameters of the main and substituted modifications.

Up to the terms of the order of k4 with respect to
the vibrational energies, the effective rotational

constants B Egv are determined by the equation!!:

! ! ! 1
B -Bp =Y of (vﬂi), (30)

A

where v is a set of vibrational quantum numbers, and
By are determined above by Eq. (22).

The vibrational-rotational spectroscopic constants
of can be obtained from the general equation for
asymmetric-top molecules.!! In the absence of

resonances, the equation for OL;LB has the form

B _
— o =

2(B§)? |3 (af")? 1/2
k c 1

i — p +6Tt[—j kkkkd?B W-‘r
(,Ok 4 v IW /’l (Dk

+ 215( j Zkkkl“

In the presence of Fermi resonance!!:!2 between
the vibrational states | and k (o;~ 20p), the
corresponding term with kp; should be excluded from
Eq. (31).

As a result, it becomes possible to determine the
number of very simple, earlier unknown isotopic

3)23%*“’1 1)
“’k‘“’z

relations between the parameters OL;LB describing the
interactions between vibration and rotation:
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x

=0; o

1
:ﬁ(a’f+ai;

i 1 7-36 x 2
-— +al); 32
o 1245 267 (ay +aj3) (32)

oy = - 5_392 (ay +a3);
343 2
4 1-0°

Yo
Ay =

25 (= 30D (450D "

41
{9(3_9)_ 92}

In Egs. (32), 6 is the known parameter of the
main isotopic modification of the molecule XH;. On
the one hand, the parameter 6 can be calculated based
on the ratio of harmonic frequencies ® and w5 (in this
case, o is taken as the average value of the frequencies
o1 and o3, 0 = ®/0y). On the other hand, it can be
considered as a semiempirical parameter determined
from the centrifugal distortion constants.

The general equation for parameters of, besides
a;fxﬁ, BE?, cogh, and g;,%, includes also the cubic

anharmonic  constants k;»uv connected with the
corresponding parameters ky,, (15) of the initial
molecule XHjy. As to the latter, here we used a simpler
model” in which only the constants kyyq, ky33, and kyp
of the initial molecule are nonzero. Based on this
assumption, the nonzero k;hw parameters determined, in

the general case, by Eq. (15) can be reduced to the
following form:

, ki1g
ki = s kgs =2 Ry

%T

23 1 - 397

F T T

62 — 30
i 2 k122 (33)

k:
3227 — 90

These equations were used in derivation of Egs. (32). As
was shown in Ref. 7, k122 (B0)'2 /20) x (1 — 20%),
and kqqy remains a parameter determined from the
vibrational-rotational ~constants a$® of the initial
molecule.

The relationships (32), on the one hand, relate the
o parameters of the XHD molecule to each other and,
on the other hand, they show how the o parameters of
the initial XH, molecule are connected with those of
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the XHD modifications, thus enabling us to estimate
the spectroscopic constants of the substituted molecule
from the corresponding parameters of the initial
molecule. To illustrate their correctness, column 2 of
Table 1 presents the values of the o parameters for the
HDS molecule as calculated by Eq.(32). The
calculations involved the values of the of parameters of
the H,S molecule from Ref. 7 (they are given in
column 4). The value ® = 2727.6 cm™! was determined
as an average of ®; and w3 taken from Ref. 13; the
parameter © = 0.4411 was borrowed from Ref. 7; the
parameter B¢ = 9.444 cm™!  was  calculated as
Be = h/8n2cmpg, where p, = 1.336 A was also taken
from Ref. 13. Column 3 of Table 1 presents the
experimental (that is, obtained from the experimental
datal4) parameters OL;LB of the HDS molecule. Columns
5—7 give the corresponding values for the molecules
HDSe and HjSe. The parameters 6 = 0.4276 and
Be=7.727 cm™! were taken from Ref.7. The
parameters (x[f and (xg in column 6 of the Table 1 were
determined by processing the experimental data, whose
analysis is given in Ref. 15 (v{ and v3 of HDSe), and
the coefficients Otg were taken from Ref. 16. As can be
seen from the comparison of columns 2 and 3, 5 and 6,
the calculated results agree well with the experimental
data.

Using simple relations (27) for «;*® parameters,
we can obtain interesting and useful relationships
between squared centrifugal distortion constants. The
latter are the coefficients ‘CIXBVS at the operators JoJ/pJ /5
in the effective rotational Hamiltonian.!? It is known!!
that ‘CIXBVS can be written in the form

2 "
Hyp B
T . ey (34)
2 Oy
A
where
1/2 pre pte
, 4mc B, B ,
op =2 2 (h—j O;)i b a® . (35)
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Having substituted Eq. (35) in Eq. (34) and taking
into account the relationships found between the
parameters entering into these equations, we obtain the

. ’
following nonzero values of 1 pys:

3 3
B Bl
Txxxx__4 w2’ Trryy = 7 9 w2’
3 3
' __@& ! ——é& (36)
Yoy T T 81 @2 Twyzz T T 9 @2
3 3
' _ _g ’ _ 2 Be
Vozzz = 7 16 o2’ Tyzxz = 9 w202

As is known,!! the Watson Hamiltonian can be
written in different forms using the method of contact
transformations. Let us write the rotational
Hamiltonian in the cylindrical form:

Hrot =
= {BZOOJ2 + BOZO]? + T40()(]2 )2 + T220]2J§ + T040]Z4 }4—
+%[(1§002 + Tond 2 + T 2, U2+ T2, +

+fog4(]ﬁ+]f). (37)

In Eq. (37) [4, B]; = AB + BA is the anticommutator; J2
is the square of the total angular momentum operator,
and J.=J, £ iJ,. The indices of the coefficients denote
the power of the operators 72 Jg, and J., respectively.
The relation of the parameters B and T to the
fundamental molecular constants and the transformation
parameter of the Hamiltonian can be found in Ref. 11.
The so-called asymmetric top reduction (or A-reduction)
made by Watson!8 is based on removing, from Eq. (37),
of the last term containing the matrix elements with
| AR | > 2:

HGP =D B2 - 8,02 = A% -
o

S TR VRN R VLR R €

1

Table 1. Vibrational-rotational parameters oci of the HDS and HDSe molecules, in cm™

Parameter | HDS,, HDS.y, |HyS (Ref. 7)| HDSeey | HDSepy" (leg_sgg)
of 0.0000 0.0106 0.1596 0.0000 0.0037 0.1158
of 0.1002 0.1026 0.1237 0.0794 0.0794 0.1086
o 0.0382 0.0393 0.0698 0.0318 0.0313 0.0568
o5 —0.2675 -0.2752  —0.3619 —0.1949  —0.2030  —0.2413
o —0.0972 —0.0924  —0.2063 -0.0706  —0.0720  —0.1721
o} 0.0281 0.0345 0.0619 0.0208 0.0252 0.0461
o5 0.2967 0.2875 0.2178 0.2284 0.2247 0.1565
o 0.0000 ~0.0003 0.0789 0.0000 0.0003 0.0719
o 0.0279 0.0292 0.0544 0.0210 0.0233 0.0416

a The values are calculated based on the data from Refs. 14 and 19. b oc[13 and ocg are
calculated based on the data from Ref. 15, ag are calculated based on the data from Ref. 16.
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'

The parameters T yp, from Eq. (36), in their turn,
can be used to obtain equations for the centrifugal
distortion constants Ay, Ajx, Ak, 87, and 8g (Refs. 11—
18) entering into the reduced rotational Hamiltonian
(38). In this case, we can obtain:

(a) relationships determining the parameters Ay, A,
Ag, 6}, and g of the XHD molecule as functions of B,
o, and 0 of the initial XH, molecule:

3 3
c_Bes . Be[95 16 o] .
Aj="o 8 AKT TR 0%

7279
3
n, _Bef55 16
K702 12 9 ’
3 3
, B3 ., Be[(7 8
%= %216 K_m2{18+9e}’ (39)

(b) direct relationships between the centrifugal
distortion parameters of the XHD molecule:

3A7 = 108, (40)
, ' 151 ., 302 _,
ZBK_AJK:EAJZWSJ’ (41)
, , 128 ., 256 _,
25K+AK=EAJ=T6J. (42)

To illustrate the correctness of obtained
relationships (39), column 2 of Table 2 presents the
results of theoretical prediction for the HDS molecule.
The initial values of the constants B¢, o, and 8 were the
same as in Table 1, and the values of the centrifugal
distortion parameters of the HS molecule were taken
from Ref. 19 (they are given in column 4 of Table 2).
For a comparison, column 3 gives the experimental values
of HDS molecule parameters borrowed from Ref. 14.

Table 2. Centrifugal distortion parameters of the ground vibrational state of the HDS and HDSe molecules, in cm™
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studies of actual spectra or in solving other problems.
In particular, the values of aj were used for
calculation of a synthetic spectrum of some bands of
the HDSe and HDS molecules. 15:30.31

As to the relationships between the centrifugal
distortion parameters (calculated data are given for the
ground vibrational state) of the HDS molecule, the
experimental data from Ref. 14 give us the following
values for Egs. (40)—(42): 2.62 cm™! for the left-hand
side of Eq. (40) and 2.84 cm™! for its right-hand side;
3.41 cm™! for the left-hand side of Eq. (41), 2.92 and
3.18 cm™! for the central and right-hand sides; 9.20, 7.42,
and 8.09 cm™! for the left-hand, central, and right-hand
sides of Eq. (42).

Before discussing the anharmonic parameters i,
and the resonance parameters F and D (Fermi and
Darling—Dennison resonances, respectively), let us
consider the fourth-order anharmonic constants. Six
parameters of all entering into the potential function of
the XH, molecule (kyy11, k1133, k3333, k1120, Ri223, and
kyy33) are nonzero within the framework of the extended
local mode approximation (for details see Ref. 7). In this
case, the general equations3 lead to the following values
of nonzero kj,,, parameters for the XHD molecule:

e

1 ’ ’
Rini1 = Rinrt, k133 =0, kagss =g kazzs

e 2, 173600 734[839
2222_9 2222 3—892 ) 1223_3_\/5 e Y

, 6 53[6 ,
kg = 39£ kit22 + 36" Be 0, ks = 2kqyqy. (43)

In the general case, the anharmonic constants for an
asymmetric top molecule have the following form?:

1

Parameter HDS,y HDSep, | HoS (Ref. 19) [ HDSey HDSeey, H,Se (Ref. 33)
Ay - 104 0.71 0.87 6.53 0.48 0.57 5.29

Ajg - 104 8.85 9.56 -22.8 6.49 7.43 -18.49

Ag - 104 -5.16 -3.77 37.03 -3.97 —4.08 26.37

8- 104 0.21 0.28 2.96 0.15 0.18 2.43

Sk - 104 5.61 6.49 -1.33 4.05 4.76 -1.83

Columns 5-7 of Table 2 present the centrifugal
distortion parameters for the HDSe molecule along with
the experimental values taken from Ref. 20.

As can be seen, the calculated results for the HDS
and HDSe molecules in many cases differ from the
experimental data (see columns 2 and 3, 5 and 6).
However, it should be kept in mind that the centrifugal
distortion parameters presented in columns 2 and 5
were calculated based only on the information about
the main isotopic modifications of the H5S and H,Se
molecules. From this point of view, the results obtained
can be considered satisfactory. Consequently, it should
be expected that using Eqs. (39) we could predict the
values to be used as the initial approximation in the

e = Oner /16— D 0%, / (B0, -

m

_Z(bikm[(zmk +(0m)71 - Qoy, —0)"1)71]/32,

m

Xpp = Opras /4~ Z¢kkm¢mll /(Aoy) -

m
—Zd)ilm[((ok +o;+0,) 1 +(0, —0; +0,)" +
m
+(~op +0; +0,) (0, +o; —0,,)71]/8+

+ZB§(C%I)2[(mk Jo)+(o; /op)]. (44)
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Here  dun = 6kuos by = 2R A2 15 b = B
A#u=v. In Eq. (44), the parameters that become
extremely large in the case of Fermi resonance o,, ~ 20
or the resonance o, ~ o + ©; are separated explicitly. If
such resonances are taken into account, the
corresponding terms should be excluded from Eq. (44).
Using then Egs. (15), (33), and (43) in the
general equations (44), for the anharmonic parameters
Xy, and the Fermi resonance parameters F,, we have:

' _ 1 ’ _ ’ — 0
X11 —§x33 = X1, X3 =Y,
.2 (17 -3662) (45)
X == —>%x + (e),
2= (3_802) 22 T
Xip = Lxu +112(0),  wxy3 = szg +193(0),
3v6 343

1
F,=——k,,. (46)
Hp W3 Aup

The following designations have been used in Eqgs. (45):

B, [(17 - 3602)(1 - 202)?
Ty (0) = —¢ { -
2 7202 1— 402
4 (1-20H)C2 -30%)% (1—492)(1—392)2}.
1- 302 1- 602 ’
1 of 2 B,
t12(9)=———a§+——><
646 B 3J6 6
¢ (47)
_ 2)2 _ 2)2
X{1+92_(1 20%)? 39)};
3 2(1-4602) 61 -6602%)
1 o0 2 B, [(2-302)2 }
T92(0) = —— o’ —‘{ — 4.
23 33 B, 3 9J3 0 | 1-362

As to the Darling—Dennison resonance interaction,
it is weak in the considered cases because of large
absolute frequency difference oy — ®,. It should be
noted that both of the stretching modes g; and g3 in
the XH, molecule are characterized by the simultaneous
motion of the atoms 2 and 3 (lyq,s constants for these
atoms are nonzero and close in value), while in the
substituted XHD molecule only the 1—2 bond is

excited at the g vibration and only the 1—3 mode at

the g5 vibration. As a consequence, excitation of one of
the two stretching modes in the XH; molecule
necessarily leads to excitation of the another mode. It
follows, in particular, from the fact that xy3 and Fp_p
have large absolute values. In the case of the XHD

molecule, we have xj3=0 and the weak Darling—
Dennison resonance. All the above-said allows us to
conclude that, in this case, excitation of one of the
vibrational stretching modes leads to a very weak (zero
in the local mode approximation) excitation of the
another mode. Excitation of one of the stretching
modes can be obtained only due to coupling of both
modes to the deformation mode, what follows from the
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presence of nonzero «xj» and x|y parameters in
Egs. (45).

Column 2 of Table 3 gives the values of the
parameters for the HDS molecule as calculated by
Eqgs. (45). The initial values of the x-parameters for the
H,S molecule were taken from Ref. 13 (for
convenience, they are given in column 4). Column 3
presents the corresponding ab initio values from
Ref. 21. From a comparison of columns 2 and 3, one
can see a satisfactory agreement between the results.

Table 3. Anharmonic parameters of the HDS molecule, cm~1

Parameter HDScat  [HDSgp initio (Ref. 21) H,S

(Ref. 13)
11 =251 ~28.6 ~25.09
X922 -5.2 —4.8 -5.72
X3 -50.2 -55.5 ~24.00
i ~10.1 -11.7 ~19.69
X3 0.0 -1.3 —94.68
x93 —24.9 —21.8 —21.09

The XH; — XH,D and XH3 — XHD,
isotopic substitution

Using the procedure described above for the
XHj; — XHD substitution, we can obtain the molecular
parameters for the isotopic modifications XH,D (Cy)
and XHD, (C,) as functions of the parameters of the
initial molecule XHg (Cs,). In this case, we consider
both of the isotopic modifications of the XH3 molecule
in parallel.

The equilibrium configurations for the main and two
substituted molecules are given in Table 4, and for the
XHD, molecule the coordinate system is additionally
turned around the axis x = y = z through the angle /3
or, in other words, cyclic permutation of the indices
x = y —> z - x is performed in order to direct the axis
OZ along the smallest moment of inertia (in both cases,
we have a quasisymmetric top).

Table 4. Parameters of equilibrium configuration of
pyramidal tetratomic molecule in a local mode

approximation?

Parameter XH; | XH,D XHD,
rix pa2/[3 0 0
, 0 0 0
ri. - pe/A3 e Pe
s A6 —pA2 -2
sy A2 e~
r3. - p./\3 0 0
rix - p./\6 - pe/A\2 pe/\2
"3y pe/ 2 pe/\2 ~ pe/\2
rs - pe/\3 0 0

aps, =0 because m/M = 0.
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The equilibrium rotational constants B if in this

case are determined by the following equations:
(a) for XH,;D

’ r 2 r
Bxeszenge; BzezBe; (48)
(b) for XHD,
I 12 2 r
BY =B, = 3 Be; 2BY = B,, (49)

where B, is the equilibrium rotational constant of the
XHsz molecule in the local mode approximation and
B{ =By, =B:=B,.

Consider now the vibrational-rotational

parameters oc;L The general equation for them, in the
case of the asymmetric top molecule, is given by
Eq. (31). The terms of this equation can be easily
found. Actually, the constants BE are presented in
Egs. (48) and (49). The harmonic frequencies can be
determined  from  Egs. (11). Using the initial
information, namely, o1 =03 =00, 0y =04 = 00 (Uygs
parameters of the XHg molecule are given in Table 5),
we obtain:
(a) for the XH,D molecule:

wi=m§=\/§a)§=w,

\[3/2 05 = 0s = 0 =13/2 00; (50)
(b) for the XHD, molecule:
of =05 =\20)=\205=0
\2 05 =04 = 0t =1/3/2 0. (G1))
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The corresponding [yqjs-parameters are given in
Tables 6 and 7.
Now let us pass to the Coriolis Q;’ﬁ and
aff

vibrational-rotational ;" constants of the substituted

molecules. Using the data from Tables 6 and 7 we

obtain, from the general equations (24) and (26), that:
(a) for the XH,D modification:

a'{m‘: yy/2_afzz__aéxx:a;;z:_afsxz:
PRRNYS:
_ o rIx _1ax _ 'y _n
ast =ay"/2=ay?/2= (nZCB) , (52)
‘ 1/2
cﬁ:—ciz—cézc%:—aé:ciz
= -5 =Ci=—1/3 (53)
Cgs=—1, Cge=1/3;
(b) for XHD,
ai"=al"=a5"=a7/2=0a"=
1,2
_aw_( r_\Y
5 8n2cB,)
(54)

vrx/_\/_ ij/_\/_:__\/gafzy/z_

I !, ’ h 1/2
,__\/:_3 2J/2 -\/:_3‘1]”7'\/5“217(8712638) :

Table 5. Iy, parameters of XY3 molecule in the rigorous local mode approximation

Noc‘k‘s‘ Ivais ‘N‘a‘k‘s‘ Inais ‘N‘a‘k‘s‘ Ivais
Tt x 1 -O2/3 1 x 2 1/3 t x 3 2/3
2 | x A -6 2 x 2 -1/6 2 x 3 A1 1/6
3| x -O2/6 3 x 2 -1/6 3 x 3 1 1/6
1]y A 0 1y 2 0 1y 3 A 0
2y A -1/(6)12 2 y 2 -1,/23)12 2y 3 1 1/203)12
3|y 1 /)12 3 y 2 1/23)172 3 Y 3 1 —1/203)1/2
1]z 1 -1,/3 1Tz 2 )1/2/3 1z 3 1 -V2/3
20z 1 -1,/3 2z 2 )1/2/3 2z 31 1/3(Q)12
31z 1 -1,/3 3 9z 2 12/3 3z 31 1/3()12
1|x 3 2 0 T x4 1 1/3v2 4 x4 2 0
2 x 3 2 122 2 x 4 1 -V2/3 2 x4 2 1,/(6)1/2
31 x 3 2 —1.212 3 x4 4 -OV2/3 3 x4 2 —1/(6)1/2
1|y 3 2 0 1y 4 1 0 Ty 4 2 A/
21y 3 2 1/2 2y 4t 1,/(6)1/2 2y 4 2 0
31y 3 2 1/2 3 0y 4 1 —A/@OV2 3 5y 4 2 0
1tz 3 2 0 1tz 4 A 1/3 1tz 4 2 0
20z 3 2 /02 2 z 4 A -1/6 2z 42 —1203)12
31z 3 2 /62 3 2z 4 A -1/6 3z 42 120312
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Cih/2==C=—Ch=—Cs6=Clg/2=—Cp=
= a5 =— G5 =~ 16, (55)
Cy=— 1, Cug=—2/3.

Table 6. Iy, parameters of XHyD molecule in the local
mode approximation

chM Ine ‘N‘a‘k‘lNM‘N‘a‘k‘ Ina
1]x 1 0 1 x 2 0 1 x 3 0
20x 1 -1/2 2 x 2 0 x 3 1,2
3/l 1 -1/2 3 x 2 0 3 x 3 1,/2
1]y 1 0 1ty 2 0 1 y 3 0
20 1 —1/2 2 y 2 0 2 y 3 —1/2
3|y 1 1,/2 3 4y 2 0 3 y 3 1,/2
1]z 1 0 t z 2 -1 1 z 3 0
20z 1 0 2 z 2 0 2 z 3 0
3z 1 0 3 z 2 0 3 z 3 0
1l 4 1/(302 1 = 5 0 1 x 6 0
2lx 4 0 2 x 5 1/2 2 x 6 0
3lx 4 0 3 x 5 -1/2 3 x 6 0
1|y 4 0 t y 5 0 1 gy 6-1/(3)1/2
20y 4 0 2 y 5 1/2 2 y 6 0
3ly 4 0 3 y 5 1/2 3 y 6 0
10z 4 0 1 z 5 0 1 z 6 0
21z 4 1/AV2 2 2z 5 0 2 z 6 -1/(3)1/2
3z 4 1/(32° 3 2 5 0 3 z 6 —-1/(31/2

" Ly, = 0 because m/M =0, fr =0, fr =0, f,5= 0.

Table 7. Iy, parameters of XHD; molecule in the local
mode approximation

N (X‘}\,‘ IJVOO\ ‘N‘ (X‘}L‘ l}\fa;\ ‘N‘(X‘?\,‘ lf\'(xk
1lx 1 0 1 x 2 0 1 x 3 0
21x 1 0 2 x 2 —1/2 2 x 3 -1/2
3lx 1 0 3 x 2 1/2 3 x 3 1/2
1|y 1 0 1ty 2 0 1 y 3 0
20y 1 0 2y 2 -1/2 2 y 3 1/2
3|y 1 0 3y 2 -1/2 3 y 3 1/2
112z 1 1 1 z 2 0 1 z 3 0
21z 1 0 2z 2 0 2 z 3 0
31z 1 0 3 z 2 0 3 z 3 0
1lx 4 @Q/HV2 1 x5 0 1 x 6 0
2|lx 4 0 2 x 5 1/2 2 x 6 0
3|lx 4 0 3 x 5 1/2 3 x 6 0
1|y 4 0 1ty 5 0 1 y 6 /312
20y 4 0 2 4y 5 1/2 2 y 6 0
3|y 4 0 3y 5 -1/2 3 y 6 0
11z 4 0 1 2z 5 0 1 2z 6 0
21z 4 1/6)1/2 2 2 5 0 2 z 6 —-1/(6)1/2
3|z 4 -1/6)"/23 2z 5 0 3 z 6 —-1/(6)1/2

" Ly = 0 because m/M =0, f,,, =0, f,, = 0, f = 0.

It remained only to consider one type of
parameters in Eq. (31), namely, anharmonic force
constants k&uv. In the general case, corresponding
equations are rather complicated. But, using the known
k-parameters of the initial molecule (with only the
force constant f,,, kept in the cubic part of the
potential function written in the natural coordinates),

we obtain the following nonzero values of k;»uv:
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(a) for XH,D

’ ’ 4 ! !
kit = kiss = \2 Ry = 346 ks,
kigs=(1/A2) B, 0 67" (1 = 209 =~[3/2 ki,

Rt = kise=k66= \2/3\3) (B,o)' 2071 (2-30?),

ki = khes = \22/33) (B /207" (1 - 30%),
ki = — kies = (- 7A[2/34/3) (B,00)'?; (56)

(b) for XHD,

' 4 ’ 4 ,
Ri11/2 = \[2 ki = \[2 Ryss = 33 kyyy,
Ehss = (1/212) (B,w)' 267" (1 - 20%) =

= (\/5/2%) k122,

k' = kie = (4/343) (B.w)' /207! (2 - 30?),

kas = kiss = ks = (N2/33) (Bw)' /267! (1307,
ki = — ke = (= 71/2/34/3) (Boo®)'/%. (57)

In the case of Coriolis resonance (o; = o), the
last term including C;fl in Eq. (31) should be replaced
by!1:

—(€P)? B} /o) (o — 0)? [y (o — 0], (58)

Then the corresponding resonance blocks of the
effective rotational operator for the states | o) = | vy, v))
and |2) =] v, + 1 v; — 1) take the form!2:

Hv{) :(?)k +1)1/20}/2{iCB]B +Caﬁ(]qjﬁ +JB‘](X +...)},
(59

Hj, = (v, +1)1/20}/2{"CB +Cop(Jodp +IpJg +-- %

where

CB:CEIBB[((DI/mk)1/2+(mk/ml)1/2]’ (60)

and the parameter C,p = d*® /2 is determined by the
equation similar to Eq. (31) (Ref. 6).

It should be noted that the contribution coming
from the term (58) is negligibly small as compared
with other contributions:

2 2
(@2 T onmo® 1] g6 ()

(0] 0)]((Dk +0)l) OLE
At the same time, if we use Eq. (31) ignoring the
Coriolis resonance, that is, leave the last term in
parenthesis unchanged, then its contribution is larger
than the contributions coming from other terms, and
this can lead to incorrect values of the o parameters.
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Thus, for the substituted XHyD molecule we have:
(a) for the parameters of the stretching vibrations

v _ oy _ e _ ooy _ 1 gy
ot =ai’ =ast oy =-—dJ =

433{1“/§ ki1 }83 462

30 B,o)'"2] 9w 4- 302
2
af =——2% 68: 1+/3—1HL ki1
® (B, 03)1/2

(62)

2 2 2
= SB[y 5t | 282 40°
o] (B,0)t/ o 1-6

2
PR

2 3 o (B,o)!/?
B2 402
_8J2B7 40 ay =0,
9 o 2-302

(b) for the parameters of deformation vibrations
(the term (58) is excluded because of its smallness)

2
oyt =alf = SBF 02 -1+ 20), af = 439923 0
9 60 oo 1-02
' 4 B?

't =qlZ = 4202 —23+9¢ /2}+
4o 27J‘em{ }
.16 B_3[4+992 2+992]

2743 00 \4-302 2-302)

28 B?
a'Z =l = —€(202 -1+3c/14) +
4 6 9\/_ (§10)
2 2
274‘9034 302
4 B2
o =¥ =——_2¢(302-4+9c /4);
* 6 9v3 0o
2 2
av - 16 2B¢ o { L3074+ 2 }
93 o 392 4 302-2

de =t :_[_)5/2 232{ 17-343 2443 }
J3 o (6v3(3-1 4672-3

Here B,, o=1/2(0; +©3), and 0 =1,/2(05 +6,),
0, =wy/®, 04 = 04/0 are the parameters of the initial
molecule, as well as the parameter kqq;.

Similar results were obtained for the XHD,
molecule as well:

(a) for the parameters of the stretching vibrations

Yy _ 'Yy _ l Xy _
ast =ay —ocs =ag =- dy? =

2
__42Bi )
3 o

5k | 4V2BZ 467
(B,m"2] 9 o 2-302

DY R
2 o (B,»)

Vol. 15, No. 9 /September 2002,/ Atmos. Oceanic Opt. 743

2
(X.’SZ = a/Z _Q& 49 2)
2 o1-96
arix ay: 8 B, 1+4/3 ki1 _1686 462 ,
) (B,o)'?2] 9 o 4-302
ay? =0;
(b) for the parameters of the deformation

vibrations (the contribution of the type (58) is
omitted)

X _ ary _ 2‘/5 233 (X,/Z

1 2B21+302
Oy =03 =-———= Oy =_——=""-

3 b W2 b 1-62
2
of oy =1 2Be {1+ (1- 392)}
242 0 3
o 8 282
oy =agt =
93 b
9 9 862
+(236)+(139) + ,
3 3 392 2 302-4
8 232

arx:al]/:
CT TR 00
202

x{—1+1(2—392)+1(1—392)+
3 3 6 362

}; (65)
2

202 }
392 4 302-2)

2
ap =10 236{ L3074 +
9v3 b
d'xz_dvyZ_(8j5/4Bz{ 13-66 12+J‘}
34 7736 T

5) 00 [3v6(/6-1) 2202-3

Taking into account that for the initial molecule®

74— (o3t
(B,o)1/2]

we can derive the relationships between the «
parameters of the initial molecule and its isotopic
modifications:

(a) for the XH,D molecule we have:

B 2
off =aj’ =at —oc’sy :—1dx,y :1Beaf _§_9L,
9 o 4-302
2
a’? :336 z OUSZ :338 Olf _2Be 462 ’
2 2 o 1-62
2 2
af’ :(x'2y :&Beaf _@B_e 46 , oy =0; (66)
3 9 o 2-362
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(b) for the XHD, molecule:

1
ay o —ag —a =-Laj -

N2, . 42B 467

3 1 9 o 2-302
2
o =6v3B,0, o oty ~ 2B 407 gy
2 o 1-62
B
o =af =2 Bya; - 108 A1,
9 o 4-362

In Egs. (63) and (65), not all terms are gathered
in order to make the comparison simpler. In particular,
it is obvious that the summation rule for the parameters
of the degenerated deformation vibrational states of
both isotopomers takes the form

(XH, D)+oc (XH,D) +— oc42(XH D)=
9

=og" (XHzD)+OL (XH,D) +— (xGZ(XH2D)—
9

=ay (XHD2)+OL (XHD, )+—oc4 (XHD,) =
9

— ot (XHDy) + o (XHD,) + 0.2 (XHD,),  (68)
9

and the direct relationships between the parameters a'3B
have the form

’ ' 1 1)
a5 (XH,D) = a Y(XH,D) = N o’ (XHD,) =

’J
2\1— (XHD,),

o5 (XHyD) = 2 4/2 o5 (XH,D). (69)

It should be noted that the term responsible for
the Fermi resonance is omitted in the equations for 0('3B
of both of the isotopomers. According to Ref. 11, it
contributes to the off-diagonal block of the effective
rotational operator:

(opor | hs | vp 210, F2) =

1 1,1 1 12 3y11,2
_ﬁ 279 i E )(01+—+5)]/ (70)
In this case, the corrections to the coefficients at the
operator g2J2 are on the order of x with respect to the
o-parameters. But because the errors of calculations
within the local mode approximation, as is seen from
the comparison with the experimental data (for
example, in Table 1), are just about several percent,
there is no need to consider these corrections in this
case.
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As to the relationships between the parameters of
the stretching vibrations for the substituted and main
molecules, from comparison of Egs. (62) and (64)
taking into account that

3/2
, = 4B} (2B2
OLT :()Lf = 20(13 —0(1,3 = £ —(—ej '\l6k111,
(0] (0]

we can easily obtain

af* (XH,D) ——ocf (XHD,) =
2

2 2
=—OL1(XH3 _§B_e 46 ,
3 9 o 4-362

o (XH,D) = 2a5* (XHD,) =

2 492
_242 o (XH, _8J2B; 40 1)
3

9 o 2-302

oy (XHyD) = 242 a5 (XHDy) =5 oj(XHs),

oy (XHyD) = o {(XHD,) =0

aZ(XHyD) = 24[2 a £ (XHD,) =
2 2
=37 (X - 2B 407
o 1-02

Experimental spectra for asymmetric isotopomers
of XHj3 molecules are poorly studied. On the other
hand, the isotopic relationships obtained allow
prediction of spectroscopic parameters for such isotopic
modifications from already known parameters of the
main molecule. Table 8 presents the o parameters
calculated by the above equations for the asymmetric
isotopomers of the AsHs and SbH3 molecules.

Table 8. Vibrational-rotational parameters o ;f of asymmetric
isotopomers of the AsHj and SbH3 molecules, in cm™!

A B | AsHbD | AsHD, | SbH,D [ SbHD,
1 x 0.0112 0.0224 0.0079 0.0158
1 v 0.0122 0.0224 0.0079 0.0158
1 z 0.0566 0.0000 0.0393 0.0000
2 x 0.0310 0.0155 0.0220 0.0110
2 y 0.0310 0.0155 0.0220 0.0110
2 z 0.0000 0.0200 0.0000 0.0139
3 X -0.0100  —0.0283  —0.0072  —0.0204
3 ¥ —0.0100  —0.0283  —0.0072  —0.0204
3 z 0.0588 0.0208 0.0401 0.0142
4 x  —0.0036 0.0010  —0.0031 0.0002
4 y 0.0074  —0.0023 0.0040  —0.0026
4 z  -0.0510 -0.0121  -0.0372  —0.0088
5 x 0.0112 0.0155 0.0079 0.0110
5 y 0.0112 0.0155 0.0079 0.0110
5 z 0.0438 0.0155 0.0315 0.0110
6 x 0.0074  —0.0023 0.0040  —0.0026
6 y  —0.0036 0.0010  —0.0031 0.0002
6 2 -0.0510 -0.0121  —0.0372  —0.0088
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In this case, the equilibrium rotational constants
have the values given in Table 9. The data from
Refs. 22-26 were taken as the initial ones. It should
also be mentioned that the above isotopic relationships
were used to study IR spectra of the PH,D molecule.32

Table 9. Equilibrium rotational parameters of asymmetric
isotopomers of the AsHz and SbH3 molecules, in cm™1

Parameter AsH,D AsHD» SbH,D SbHD,
B 3.80 1.90 2.97 1.49
BS 2.53 2.53 1.98 1.98
B, 2.53 2.53 1.98 1.98

It is known that the coefficients tqp,5 at the
rotational quantum number J raised to the fourth
power are calculated by the general equation (34). In

the case of a simple model, we have B = BZ. Thus,
A-reduction cannot be used because of the difference

By — By in the denominators of the equations for the
parameters D’ of the reduced Watson Hamiltonian (38)
(Ref. 11). In this case, one has to use the so-called
symmetric top reduction (or S-reduction) proposed by
Winnewisser?’” and Van Eijck.28 This reduction is
obtained through removal of all terms depending on J,
and including the matrix elements |Ak|> 0 from
Eq. (37). The reduced Hamiltonian can be written,
accurate to the fourth-power terms, as!!:

HE =Y BEIE - DU = Dy 2 -

o

—DgJi+dJ U2+ T +dy(J2+ T+, (72)

where J.=J,+1i/, Finally, we obtain simple
relationships for the parameters D':
(a) for XH,;D
pox _ 8 Be g2y
810202
H,DX _ 80 B}
D) =>=—¢—(3-202),
K 81 w202
(73)

B3
pHPX 4 Be (5390 gy
810202

B3
aiPx ~ 4 —e 021, d":PX =0,
81020

Using then Egs. (73), we can find the sought
parameters and compare them with each other. In this
case, it is necessary to know only the semiempirical
parameters 0:

+H,DX +H,DX /H,DX /H,DX
D D'l 2D 2d,

;o (74)

190> +1_ 10(3-20%) 8302 —62 0% 1
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(b) for XHD,

pHD-X _ 32 B} (462 +1), D,I]J(DZX 16 B3 Be (6.62),
4 81 0262 I 81262

ppp:x 1 Be 2 (6307 +128),
81 0202

a; 102X 16 52(92 D, "X -0 (75)
81 w-6

and

D}HDZX D}?{sz 2D}<HD2X 9 HD2X

(76)

80242  6+02 128+6302 021

The centrifugal distortion parameters calculated
by these equations for asymmetric isotopomers of the
AsHg and SbH3 molecules are given in Table 10.

Table 10. Centrifugal distortion parameters of the ground
vibrational state of asymmetric isotopomers of the AsHs and
SbH3; molecules, in cm™!

Parameter AsH,D AsHD» SbH,D SbHD,
Dy - 104 0.71 2.77 1.68 2.63
Djg - 104 15.1 7.18 10.2 4.76
K - 104 -13.3 10.2 -9.12 —6.70
dy - 104 0.00 0.00 0.00 0.00
dy - 104 —0.23 —-0.92 -0.16 —0.64

Consider then the parameters xp; corresponding to
the stretching vibrations. Since the three stretching
coordinates are arranged so that two of them form a
couple of vibrations located along the X—H (XH,D) or
X-D (XHD,) bonds, as in the case with the X,
molecule, and the third one experiences a very weak
(zero in the limit) effect from the first two, we have
the following equations:

xy(XH,D) :ix{S(XHZD) - x4 (XH,D) =
= x5, (XH,D) = 2x5,(XHD,) = 2x55(XHD,) =

- %xQS(XHDZ) = %xh(XHDQ) =

21y (XH,D) = x55(XHD,) = x{, (XHD,) =
= xis(XHDz) = 0

where kyqq1 is the fourth-order anharmonic constant of
the potential function of the XHg molecule.

For the case that one index corresponds to a
stretching vibration, while the other one to the
deformation vibration, the relationships between the
parameters take the following form:
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xi3(XH;,D) = 2x53 (XHD>) =§x12(XH3),

Xés(XHzD):2.76'35(XHD2)=§.9623(XH3)+
Be (1-302)+3 122(—1 1 )
0 8 o \20+1 20-1

x{4(XH2D):xi6(XH2D):x’45(XH2D):

= X'ISG (XHzD) :%X{4(XHD2) =

:lxis(XHzD)z Be —4)+
2 6
_ 2)2
+ 30k (4 &4_&&, (78)
Vo 9v30 1-302

Xé4(XH2D)ZXéﬁ(XHZD)sz’24(XHD2):
=2x45(XHD,) = 2xh5 (XHD,) =
=2x5(XHD,) = 52 Z2B,6+

3v3
L 2B (1-30%)% 302)2

+—9k111 e 2
Vo 9J_e 1-60

x§3(XH2D) = xig(XHDz) =0.

And, finally, when both indices correspond to a

deformation  vibration, we have the following
equations:
(a) for XH,D:
2 2
xh3 :—§&(892 _1)_§kiﬁ_ik1ﬁ{#_#}y
8 62 4 0 16 o (20+1 20-1
’ ' 1 Be 2
= = 2336 - 36) —
X44 = X66 144 ( )
18{( “1—26 1 221—46}
-——21(2-306%) +=(1-30%)
18 @2 1-302 2 1- 602
.X'34 —X36 Z—L—e(15192 24) -
3643 62
L B —£(1-20%)(2-302), 79)
4— 2
y =———(207e2 50) -
Y46 54 0
2Be( 221—29 1 B, 2y2
-£_¢(2-36%) - (1-362)%;
990 1-302 27 02
(b) for XHD,
2 2
2xé3——§&(862 )_§k1£_i@{#_#},
860 4 o 16 ® 20+1 20-1
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Xy = Xhg =—7—2 e? (16162 - 33) -

1B, {(2 302)2 1= 262 (1 32)2 1-40° 49} 49B,

9 62 1- 302 1-602) 120
why =t =———De (15802 15)
) 906 02
1 B,
———(1—292)(2—392), (80)
6+/6 62
Xy = 139(10292 35) -
540
_ABe () 302212202 1Be y a0n
02 1-362 962

The resonance term is separated explicitly in the
equations for x'33. This should be kept in mind, when
considering the Fermi resonance 6 — 1,/2.

Thus, using the XH, and XHj3 molecules as a case
study, we have demonstrated new prospects of using
the results of the extended local mode approximation
and the isotopic substitution theory. It should be noted
that this does not exhaust the capabilities of this
approach, because the theory of isotopic substitution in
this case was considered based on the extended local
mode approximation, whose application implies
fulfillment of the conditions presented in the beginning
of this paper. However, similar investigations can be
conducted in the case that some of these conditions of
the local mode approximation are lifted. For example,
the problems of the isotopic substitution theory as
applied to the XH; molecules with an arbitrary angle
between the bonds were considered in Ref. 29.
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