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Accuracy criteria for calculation of the logarithmic derivative An of the Riccati–
Bessel function of the first kind by the Mie theory are proposed. A combined 
algorithm for calculation of An is described. It allows one to reduce the capacity of a 
random–access memory thereby providing the opportunity for calculating the optical 
characteristics of particles with a diffraction parameter of 106 and larger using a PC.  

 
1. INTRODUCTION 

 
Results of numerical study of the optical 

characteristics of aerosol particles by the Mie theory are 
widely used in ecology for investigation of dispersed 
atmospheric and water polluttants; in astrophysics for 
diagnostics of the properties of interstellar matter and the 
atmospheres of planets and comets; in microbiology, 
chemistry, and polymeric technology for determination of 
the size and concentration of macromolecular structures; 
and, in plasma physics and optics for determination of the 
parameters of inhomogeneities.1–4 The central problem 
associated with such calculations is determination of the 
logarithmic derivative An of the Riccati–Bessel functions of 

the first kind of the complex argument z = r + iμ (Ref. 5).  
In this paper the well–known methods for calculating 

An are compared and accuracy criteria are proposed. New 

method for calculating An allows one to reduce the capacity 

of a random–access memory and to decrease somewhat the 
execution time. In addition, for the first time the optical 
characteristics of the particle with a diffraction parameter of 
106 and larger can be calculated using personal computers.  

The use of logarithmic derivative An of the Riccati–

Bessel functions of the first kind (RBF1) considerably 
extends the range of applicability of numerical 
investigations by the Mie theory with the help of a modern 
PC. To calculate the terms An, backward recursion is 

commonly used of the following form:6–8  
 

An–1 = 
n
z – 

1

An + 
n
z

 . (1.1) 

 

In this case the calculation starts from a certain number 
N > ⏐z⏐ for which it is assumed that6,7  
 

AN = 0 .  (1.2) 
 

Assumption (1.2) contradicts the asymptotic behavior of An 

which has the form6  
 

AN g ( N + 1) z–1  (1.3) 
 

and points to a considerable increase in An as n increases. In 

spite of this fact, substitution of Eq. (1.2) into Eq. (1.1) 
makes it possible to find the correct terms An for 

n = 1, 2, ..., l, where the quantity l is slightly less than an 
initial number N from which we started to calculate the  

sequence An. This is provided by the absolute stability of a 

procedure for calculating by Eq. (1.1) (see Ref. 6). The 
necessity of holding of all the calculated terms An in the 

random–access memory can be considered as a disadvantage 
of this procedure. Moreover, the length l of the correctly 
calculated subsequence An should be sufficient for the Mie 

series summation.  
The lack of methods for estimating the accuracy of 

calculation of An eliminates the possibility of real–time 

control over the Mie series convergence within the length l 
of the correctly calculated sequence. In this paper we study 
the potentialities of forward recursion. The advisability of 
the An calculation from the corresponding continued 

fraction for n ≥ 0.3⏐z⏐ + 1 is shown. A combined algorithm 
for calculating An is developed without holding of the entire 

array An in the random–access memory except for one or 

two current values. As a result, there appears a possibility 
to perform calculations by the Mie theory using personal 
computers consuming for this purpose not more than 
50 Kbytes of the random–access main memory 
independently of the values of the diffraction parameter of a 
particle (up to 106 and larger) and the light absorption 
coefficient of particle material.  

 
2. ACCURACY CRITERIA FOR THE CALCULATION 

OF An  
 

Calculations by Eqs. (1.1) and (1.2) yield the sequence 
An, n = 1, 2, ..., N, first terms (n = 1, 2, ..., l) are 

calculated correctly but the last terms (n = l + 1, ..., N) 
are characterized by the inadmissibly large error. The value 
of l is estimated, as a rule, intuitively because there are no 
accuracy criteria for calculating the sequence An. At the 

same time such criteria can be obtained from the relations of 
the Riccati–Bessel functions of the first ϕn, the second χn, 

and the third ξn kinds9,10  
 

ξn ϕ′n – ξ′n ϕn = i , (2.1) 
 

ϕn χn–1 – ϕn–1 χn = z–4 , (2.2) 
 

ϕn+1 χn–1 – ϕn–1 χn+1 = 
2n + 1

z5  . (2.3) 

 
The derivatives ϕ′n and ξ′n (z) are defined by the relation of 

the following form10: 
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f ′n = fn–1 – 
n
z fn . (2.4) 

 
By substituting Eq. (2.4) into the formula for logarithmic 
derivative of the RBF1 (see Ref. 5)  
 
An = ϕ′n ϕ

–1
n  , (2.5) 

 
we derive  
 

An = ϕn–1 ϕ
–1
n  – 

n
z . (2.6) 

 
Let us write down relations (2.1)–(2.3) in the form  
 

ξn ϕ′n – ξ′n ϕn

ξn–1 ϕ ′n–1 – ξ ′n–1 ϕn–1
 = 1 , (2.7) 

 
ϕn χn–1 – ϕn–1 χn

 ϕn–1 χn–2 – ϕn–2 χn–1
 = 1 , (2.8) 

 
ϕn+1 χn–1 – ϕn–1 χn+1

 ϕn+2 χn – ϕn+2 χn
 = 

2n + 1
2n + 3 . (2.9) 

 
By substituting Eq. (2.6) into Eqs. (2.7)–(2.9) and using 
the relations for the RBF1 (see Ref. 10)  
 

ϕn+2 = 
2n + 3

z  ϕn+1 – ϕn , (2.10) 

 
we obtain the following equations:  
 
F1(l) = Al (ξl – Al–1 ξl–1 + ξ′l–1) – 

 

– 
l
z Al–1 ξl–1 – ξ'l + ξ′l–1 

l
z , (2.11) 

 

F2(l) = ( )Al + 
l
z

–1

χl–1 – χl – χl+2 +( )Al–1 + 
l–1
z χl–1, (2.12) 

 

F3(l) = 

χl–1 – ( )Al + 
l
z  ( )Al+1 + 

l+1
z χl+1

2l+3
z  χl – (χl + χl+2) ( )Al+1 + 

l+1
z

 – 
2l + 1
2l + 3. (2.13) 

 
The accuracy criterion in calculating the spherical functions 
and An is the proximity to zero of the functions F1(l), F2(l), 

and F3(l).  
One more accuracy criterion of the An(z) calculation is 

the relation derived from Eqs. (2.5) and (2.6)  
 
F4(n) = An – ( α(z) – n) z–1 , (2.14) 

 
where α(z) is the continued fraction of the form11  
 

α(z) = 2n + 1 – 
z2

2n + 3 – 
z2

2n + 5 – 
z2

...

 , (2.15) 

 
which is equal to the RBF1 ratio of the form11  

α(z) = z 
ϕn–1

 ϕn
 . (2.16) 

 
The procedure for the α(z) calculation is discussed below. A 
sharp increase in F1(l), ..., F4(l) as l increases indicates 

possible inadmissible growth of the error. The terms 
F1(l), ..., F4(l) of the sequence An calculated from 

Eqs. (1.1)–(1.3) for z = 10 – i 10 beginning with N = 40 
showed the following fact. Quadruple–precision complex 
numbers instead of single–precision ones do not increase the 
rate of convergence of a monotonically decreasing sequence. In 
the case under consideration the change–over from Eq. (1.2) 
to Eq. (1.3) results in one–step increment in the length l of 
the sequence An(z) calculated to three significant digits 

beyond the decimal point. When using Eq. (1.2), l = 37 and 
for Eq. (1.3) l = 38. With increase in the modulus of the 
imaginary part of z the deviation from zero of the initial terms 
F1(l), ..., F4(l) increases. The change–over from the single–

precision numbers to quadruple ones ensures a decrease in the 
modula of the initial terms F1(l), ..., F4(l). Thus the 

calculations by backward recursion should be preferably 
started from the asymptotic value of An but not from zero. The 

length of the correctly calculated sequence can be determined 
from Eqs. (2.11)–(2.14).  

 
3. CALCULATION OF THE SEQUENCE OF THE RBF1 

LOGARITHMIC DERIVATIVE BY FORWARD 
RECURSION 

 
The RBF1 logarithmic derivative is calculated by the 

formula  
 

An = – 
n
z + [ ]n

z – An–1

–1

 . (3.1) 

 
The initial value of A0(z) being substituted into Eq. (3.1) to 

start the calculations of An(z) is equal to5–7  

 
A0 = cot z .  (3.2) 

 
The formula for cotangent of the complex number has the 
following form6  
 

cot z = 
sin(r) cos(r) + i sinh(m) cosh(m)

sin2(r) sinh2(m)
 .  

 
For large values of μ it is advisable to use the asymptotic 
formula for cotangent  
 

A0 = 
⎩
⎨
⎧(0, i), for μ ≤ – β,

(0, – i), for μ ≥ β,
 (3.3) 

 
instead of Eq. (3.2) to avoid the errors due to exponent 
overflow. Here β ≈ 170. However, the quantity A0 becomes 

equal to its asymptotic value (3.3) for β n 170. This is 
achieved the faster, the shorter is the real number length. 
Therefore, the optimal choice of the value β at which 
relation (3.3) starts to be valid depends on the length of 
real and complex numbers. In the case of single–precision 
number (real*4 and complex*8) it is preferable to choose 

β ≈ 8.08, for number (real*8 and complex*16) β = 17.3, 

and for the quadruple–precision number (real*16 and 

complex*32) β ≈ 37.4. Calculations by forward recursion  
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(3.1) enable us to avoid holding of all the values of An in 

the random–access memory except for two last ones. This 
advantage incurs a risk of accumulated errors characteristic 
of Eq. (3.1).  

Calculations by Eq. (3.1) result in significant errors for 

n >∼ ⏐z⏐ (see Refs. 5–7). This fact is responsible for the errors 

in calculating the efficiency factors for metal particles with 
the diffraction parameter ... κρ... > 30 by the Mie theory (see 
Ref. 5). The step at which an error creeps in the sequence An 

depends on the length of the machine number. Figure 1 
illustrates the results of calculation of the sequences Re{An} 

(curves 2, 4, 6, and 8) and Im{An} (curves 1, 3, 5, and 7) for 

z = (10 – i 10) with the single–precision (curves 7 and 8), 
double–precision (curves 5 and 6), and quadruple–precision 
numbers (curves 3 and 4). For small n all the results of 
calculations of An are in a good agreement. As n increases, 

accumulation of errors characteristic of monotonically 
increased sequence results in an inadmissibly large error in 
calculations with the single–precision numbers (curves 7 and 
8) beginning from l1 = 15. The double–precision numbers used 

to find the sequence An by Eq. (3.1) for z = 10 – i 10 yield 

the correct results up to l2 = 24, while the quadruple–

precision numbers up to l3 = 38.  
 

 

 
 

FIG. 1. The sequences Re{An} (curves 2, 4, 6, 8, and 9) and 

Im{An} (curves 1, 3, 5, 7, and 9) for z = (10 – i 10) for the 

single–precision (curves 7 and 8), double–precision 
(curves 5 and 6), and quadruple–precision numbers 
(curves 3 and 4) calculated by forward recursion (3.1). 
Curves 1 and 2 are calculated from continued fraction [see 
Eq. (4.1)]. Straight line 9 shows the asymptotic estimate of 
Re{An} and Im{An}.  

 
Figures 2a and b show the results of calculation of l1, 

l2, and l3 as functions of the real r and imaginary parts of 

the complex argument z = r + i μ. In Fig. 2a the modula of 
the negative quantities μ are plotted along the y axis. Let 
us denote the variable part of the argument z by x (in 
Fig. 2a it is r, in Fig. 2b it is ⏐μ⏐), and the parameter of 
the argument by p (⏐μ⏐ in Fig. 2a and r in Fig. 2b). It is 
clear from Fig. 2 that for x ≤ p the quantities l1, l2, and l3 

depend on p rather than x  
 
l1 ≈ 2⏐p⏐ + 2 ,  

l2 ≈ 4⏐p⏐ + 4 ,  
 

l3 ≈ 6⏐p⏐ + 6 .  
 

The only exception is the region of minimum of l1 – l3 for 

μ ∈ (10, 100). For x > p the dependence of the quantity 
l1 – l3 on the parameter p disappears. From Fig. 2 one can 

see that for large x all the curves l1, l2, and l3 tend to 

merge into three groups.  
 
4. USE OF CONTINUED FRACTION TO DETERMINE 

An 
 

By substituting Eqs. (2.15) and (2.16) into Eq. (2.6) 
we derive the following relation:  
 

An = ( α(z) – n) z–1 ,  (4.1) 
 

which can be used for calculating the quantity An for k < n 

without holding of the preceding values of An in the 

random–access memory (see Ref. 7). Two algorithms for 
calculating the continued fractions are familiar, namely, 
forward recursion (FR) and backward recursion (BR) 
algorithms (see Ref. 12). As applied to Eq. (2.15), the FR 
algorithm can be written as follows:  
 

bκ = 2n + 2κ + 1 ,  
 

Pκ = bκ Pκ–1 – z2 Pκ–2 ,  
 
 

Qκ = bκ Qκ–1 – z2 Qκ–2 , (4.2) 
 

ακ = Pκ Q
–1
κ  ,  κ = 1, 2, ...  

 

where P–1 = 1, P0 = 2n + 1, Q–1 = 0, and Q0 = 1. 

Calculation by the FR algorithm is terminated when the 
modula of the increments of real and imaginary parts of the 
complex number ακ do not exceed the preassigned small 

parameter ε > 0 in going to ακ+1  
 

⏐Re ( ακ – ακ+1)⏐ < ε⏐Re (ακ+1)⏐ , (4.3) 
 

⏐Im ( ακ – ακ+1)⏐ < ε⏐Im (ακ+1)⏐ . (4.4) 
 

However, there is one more reason for termination of 
calculations by Eq. (4.2), namely, exponent overflow in the 
calculation of Pκ before conditions (4.3) and (4.4) are 

fulfilled. To pursue calculation of α(z), it is advisable to 
use the BR algorithm which in the case of Eq. (2.15) has 
the following form:  
 

G j
κ+1 = 0, bκ = 2n + 2κ + 1,  

 

Gj
κ = – z2 (bκ + G j

κ+1)
–1 ,  κ = n, n–1, ..., 1 ,  (4.5) 

 

αj = b0 + Gj
1 .  

 

Calculation by Eq. (4.5) is repeated for j = m + 1, m + 2, ..., 
until conditions (4.3) and (4.4) will be fulfilled. A 
disadvantage of the BR algorithm is impossibility to use any 
intermediate term of the sequence in further calculations. Note 
that the use of the quadruple–precision numbers in the 
summation of continued fraction (2.15) does not provide any 
benefit until ε starts to increase the length of the real 
number. Therefore, for ε ≥ 10–6 it seems to be reasonable to  



660   Atmos. Oceanic Opt.  /September  1993/  Vol. 6,  No. 9 N.N. Belov  
 

 

perform the summation of the single–precision numbers in 
Eq. (2.15). This combined sequence of the α(z) calculations 
proposed by us ensures a possibility of using earlier calculated 
terms in further calculations (as part of the FR algorithm) and 
eliminates the exponent overflow in calculating the 
intermediate quantities in going to the BR algorithm. At the 
same time, this method is capable of minimizing the effect of 
disadvantages peculiar to each of these algorithms and making 
the calculations of α many times faster, especially for large 
values of ⏐z⏐ and small values of n and ε. At the same time 
for small ratios n⏐z⏐–1 the calculations of α(z) even by the 
proposed combined method require the large number of 
iterations. Thus a decrease of the random–access memory 
capacity is accompanied by a significant increase in execution 
time for n⏐z⏐–1 n 1.  
 

 

 
 
 

FIG. 2 Lengths l1, l2, and l3 of the sequences of the 
logarithmic RBF1 derivatives correctly calculated for the 
single–precision (curves 3, 6, and 9), double–precision 
(curves 2, 5, and 8), and quadruple–precision complex 
numbers (curves 1, 4, and 7). The real part r of the 
argument (a) and the modulus of the negative quantity μ 
(b) are plotted along the x axis. a) Curves1–3 are for 
μ = – 100, curves 4–6 are for μ = – 10, and curves 7–9 
are for μ = – 10–2; b) curves1–3 are for r = 30, curves 4–
6 are for r = 10, and curves 7–9 are for r = 10–2.  

Figure 1 shows the results of calculation of Re{An} 

(curve 1) and Im{An} (curve 2) by continued fraction (4.1). 

One can see that curves 1 and 2 are in a good agreement with 
An calculated by forward recursion (1.3). Moreover, for  

n⏐z⏐–1 . 1 curves 1 and 2 tend to asymptotic values of 
Re{An} and Im{An} calculated by Eq. (1.3) and shown by 

straight line 9 in Fig. 1.  
 

5. CONCLUSION 
 

In calculating the sequence of the logarithmic 
derivative An(z) by backward recursion (1.1) it is better to 

use the asymptotic value obtained from Eq. (1.3) instead of 
Eq. (1.2) as an initial one. To reduce the random–access 
memory capacity, it is advisable to calculate by forward 
recursion (3.1)–(3.3) instead of backward one. Accumulated 
errors creeping in calculations of the quadruple–precision 
numbers by Eqs. (3.1)–(3.3) become pronounced only after 
the summation of the Mie series terminates.  

Correctness of calculated values of the logarithmic 
derivative should be estimated by Eqs. (2.11)–(2.14). 
Calculations for the quadruple–precision numbers significantly 
increase the execution time. In addition, they are not 
implemented in translators preceding FORTRAN–77. 
Calculation of the correct sequence An for the single–

precision numbers is ensured by the combined algorithm 
according to which forward recursion (3.1)–(3.3) is 
employed for n < 0.3⏐z⏐ + 1, while for n ≥ 0.3⏐z⏐ + 1 An is 

determined from continued fraction (4.1)–(4.5). Formulas 
(4.1)–(4.5) can be used for calculation of any An, but the 

summation of continued fraction (2.15) requires more and 
more iterations as n⏐z⏐–1 decreases. At the same time, for 
small n⏐z⏐–1 the forward recursion ensures a necessary 
accuracy in calculating An. The combined FR–BR algorithm 

is best suited for calculation of continued fraction (2.15). In 
this case the calculation of Eq. (2.15) should be started 
from Eq. (4.2) at each step checking the fulfilment of 
conditions (4.3) and (4.4) and the case in which the 
modulus ⏐Pκ⏐ is in excess of 1070. If the absolute value 

⏐Pm⏐ > 1070 at the mth step, the calculations of the 

continued fraction are pursued at the (m + 1)th step by BR 
algorithm (4.5). Fulfilment of conditions (4.3) and (4.4) is 
indicative of the fact that the prescribed accuracy of 
calculations of the continued fraction is reached.  

The technique developed in this paper removes all the 
limitations imposed on calculations of logarithmic 
derivatives of the Riccati–Bessel spherical functions of the 
complex argument and ensures the possibility of calculations 
by the Mie theory for arbitrary parameters of diffraction of 
particles and coefficients of light absorption by particles 
even when the random–access memory capacity is not more 
than 50 Kbytes.  
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