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The theory of inverse problems of the optics of aerosol interacting with different 
physical fields under the conditions of the real atmosphere is presented. It is shown that 
based on the numerical solution of such problems it is possible to develop methods for 
remote study of physical processes in the atmosphere and the spatial and temporal 
variability of the parametric fields. The starting information consists of the aerosol 
characteristics of light scattering, measured by optical sounding of the atmosphere. The 
basic integral equations for the inverse problems under study are presented and methods 
for solving the numerically are given. 

 
 

The physical processes in which the aerosol 
systems in the atmosphere are involved can be studied 
by the methods of optical sounding by inverting the 
measured characteristics of the aerosol light scattering. 
To do so it is important that the spatial and temporal 
variability of these characteristics depends directly on 
the state of the physical fields in the atmosphere. Since 
optical methods do not "disturb" the medium under 
study the most reliable information about the 
parameters of the fields can be obtained. The main 
difficulties in this approach are largely related with 
the inversion of the optical measurements and 
unequivocal extraction of physical information from 
them. This paper is devoted to the development of 
numerical methods for interpreting data obtained by 
optical sounding of polydispersed systems of particles 
interacting with the physical fields. In order to present 
the material as clearly as possible the aerosol system in 
the moisture field is studied as the main example. We 
note that the interaction of aerosols with the moisture 
field plays an important role in the solution of 
forecasting problems, associated with the residence 
time of dispersed pollutants in the atmosphere.1 

In developing a theory of optical sounding of a 
polydispersed systems of particles interacting with the 
moisture field the theory is significantly simplified if it 
is assumed that over the time of the experiment the 
total number of particles in the scattering volume 
remains constant. In other words, it is assumed below 
that sedimentation of particles, which accompanies 
condensation growth of particles in the moisture field, 
can be neglected to a first approximation. 

It is convenient to start the formulation of inverse 
problems connected with the study of such aerosol 
systems with the integral representation of their 
optical characteristics, which is usually written in the 
form of the following integral: 
 

 (1) 
 
in which K( ,m  r, ) is the efficiency factor for 
scattering of light with wavelength  by a particle of 
size r (R1  r  R) and N(r) is the integral 
distribution of the number of particles in the local 
scattering volume. The attenuation efficiency factor 
Kex( ,m  r, ) can play the role of the function 
K( ,m  r, ), if in the experiment the spectral behavior 
of the aerosol attenuation coefficient ex() or the 
backscattering factor K( ,m  r, ) is measured using 
lidars for sounding the aerosols, etc. In all cases 
indicated above the quantity m characterizes the 
complex index of refraction of the particle material. It 
is well known that a particle in a moisture field grows 
as the humidity increases. This process is described 
with the help of the approximate relation 
r(f) = rd (f), in which f denotes the relative 
humidity and the function is called the growth factor. 
It is assumed that for some value f = f0 (usually 
f0  40–50%) (f0) = 0 = 1. It is obvious that 
(f)  1 and r(f0) = rd. The quantity rd is usually 
related with the so-called dry fraction of the 
atmospheric aerosols.2 

As regards the change in the index of refraction of 
the particles owing to absorption of moisture from the 
air the following analytical model can be adopted: 
m (f) = m w + ( m d – m w)–3(f), where m w is the 
index of refraction of water and m d is the index of 
refraction of the aerosol material in its starting (dry) 
state. The dependence of the particle size and the index 
of refraction of its matter on the growth factor  permits  
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formulating the inverse optical problem, in which the 
spectral behavior () (min    max) is the 
measured function and the distribution (f) if 
f0  f  1) is the function sought. The function (f) 
describes the interaction of the moisture field with the 
system of particles under study with the starting 
distribution Nd(rd) (Rd1  rd  Rd2) and index of 
refraction .dm  Information about the distribution 
Nd(rd) can be obtained from optical measurements of 
(, t0), referred to the initial time t0, to which the 
value of the humidity f0 = f(t0) should correspond in 
the experiment. For this it is necessary to invert 
numerically the integral equation 
 

 (2) 
 

The index "d" in the variable of integration is dropped, 
since it is present in the limits of integration Rd1 and 
Rd2. Methods for solving Eq. (2) numerically were 
presented in a previous work of this author.3 We shall 
assume below that in the experiment the relative 
humidity f increases systematically in time. By virtue 
of the fact that the function (f) increases 
monotonically as f increases and therefore the 
transformations f   and   f are one-to-one, the 
problem formulated above can be reduced to a 
sequence of equations of the form 
 

 (3) 
 

from which it is required to find the values of j from 
j = (, fj). In accordance with the assumption that 
the number of particles in any unit volume of the 
medium under study is conserved we can write the 
following equality: 
 

 (4) 
 

which is valid for all times tj at which the values fj are 
recorded and measurements of j are performed. 
Starting from the analytical properties of the integral 
distributions it can be shown that a stronger relation 
holds between the functions Nj(r) and correspondingly 
the integrals Rj, namely, 
 

 (5) 
 

where r  Rj, r  Rj and rj(r) = rj(r). 
Assuming that Nd(r) corresponds to j = 0 (the start of 
the increase in the humidity in the experiment, i.e., 
j=0  1), the system (3) can be rewritten in the form 
 

 (6) 

 

Since the distribution Nd(r) and the interval Rd are 
assumed to be known, which was already mentioned 
above, equations (6) are determined for all j. Solving 
these equations numerically we find the collection {j} 
vector f = {(fj, )}, where the wavelength  is 

fixed. Thus the transformation   
 

f  is 
algorithmically fully determined and therefore the 
function (f) is also determined by virtue of the unique 
correspondence between the values of j and fj. 

In the scheme presented above for interpreting the 

optical measurements, represented by the vector 


f, 
the main point, of course, is the numerical solution of 
a nonlinear equation of the form 
 

 (7a) 
 

where the notations    
d

d
R

( ) ( ( ), ) ( )F K m r dS r  and 

Sd(r) = r2dNd(r) was employed. The analytical 
structure of this equation naturally leads to the 
interaction scheme 
 

 (7b) 
 
where p is the number of the iteration. In developing a 
theory for interpreting the experimental data based on 
iterative processes it is important not only to optimize 
their logical scheme bug also to indicate the condition 
under which they converge. The latter circumstance is 
directly related to the problem of planning an 
experiment, optimizing the volume of required data, 
and achieving the highest reliability of the results of 
interpretation in the face of one or another a priori 
uncertainty in the inverse problem. Recall that the 
quantities  and F depend on  and therefore the 
sounding wavelength can be specifically chosen so as 
to make the iteration scheme (7b) converge rapidly. It 
should also be kept in mind that convergence of the 
scheme (7b), aside from everything else, indicates the 
existence of nontrivial solutions of Eq. (6). As regards 
the nonlinearity of these equations, the corresponding 
studies are best performed by the methods of numerical 
modeling taking into account the specific 
characteristics of concrete experiments. 

The iteration scheme (7b) corresponds to the 
so-called simple iteration, the condition for 
convergence of which is well known and can be written 
down, for the case under study, in the form of the 
inequality 
 

 (8) 
 

An examination of this condition suggests some 
simplifications that are completely acceptable in the 
optics of atmospheric aerosol. In particular, we shall 
assume that the factor K(m (), r, ) is a function of 
one variable, for example, , like, for example, in the 
case of the attenuation factor of soft particles, where  
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 = 2(m  – 1) 2r–1. We make this assumption solely 
to simplify the calculations of the derivative of the factor 
K() with respect to the variable , and it is in itself not 
related with any other fundamental restrictions. 
Accordingly, we can study the factor K(()), where 
() = q()r and q() = 2( m () – 1) 2–1. Since 
K = K   and Kr = K  r using the relation 
 
K = Kr  / r = Kr q / q, (9) 
 
we find 
 

F = (q / q) 
2

1

R

R

K r rs(r) dr (10) 

 
Subsequent integration by parts makes it 

unnecessary to calculate the derivatives of the factor, 
which is very nontrivial, if one starts from the working 
formulas of Mie’s theory in which the indicated factors 
are expressed in terms of poorly converging series.4 As 
a result it remains to evaluate two quantities, namely, 
 

 
 

The first quantity does not exceed the value (–/2). 
As regards the ratio of the integrals, in accordance 
with the theory of differentiation of the spectral 
optical characteristics of light scattering by 
polydispersed systems of particles, developed in 
Refs. 3, 5, and 6, it is a function of () = /, 
which plays an important role in the analysis of the 
spectral variability of the optical aerosol 
characteristics.3 Finally, we find that the inequality 
(8) is equivalent to the condition 
 
w() < 2. (11) 
 

As computational-analytical studies show3,5,6 for 
typical atmospheric aerosol formations, described, in 
particular, by the optical models systematized in the 
monograph Ref. 7, the quantity w() is close to unity 
for visible wavelengths. For this reason the restriction 
(11) is not stringent. Representing the function w() 

analytically in terms of  and the derivative 
1
 is 

convenient in that this makes it possible to evaluate it 
directly from the spectral behavior of (). 
Concluding this analysis of the computational scheme 
(7), we recall that the dimension of the vector being 
inverted f = {(fj, ) at j = 1,  m} is equal to that 
of the vector sought  = {j = (fj)} and the 
variability of the optical characteristic  with respect 
to the parameter f is the carrier of information about 
(f). At the same time it is easy to see that if the 
growth function (f) is known a priori the equations 
(6) can also serve as a source of information about the 
starting distribution Nd(r) (r ° Rd). Of course, there 
arises the question of the information content of the 

vector 


f  and comparing it with the information 

content of vector  = {(1), for i = 1,,n} which, 
as it was previously proposed, should be used for 
preliminary estimation of Nd(r). We shall make this 
comparative analysis on the basis of an entirely 
qualitative approach, using for (f) the known 
empirical dependence (f) = (1 – f)–, where 
0.2   0.3 (Ref. 2). It is obvious that if all values of 
j corresponding to fj = f(tj) are known, then, 
introducing some a priori vector Nd = {Nd(r1) for 
l = 1,,m} and writing Eqs. (6) in algebraic form, 
we arrive at a linear system of equations for the 
components Ndl(l = 1,,m). Whether or not the 
system obtained, which can be regarded as the analog 
of the concept "information content," is 
well-conditioned depends on the variability of the 
scattering factor as a function of the parameter . This 
variability can be judged based on the total amplitude 
of the function q(), i.e., from the value of the ratio 
a = max q()/min q(). As f varies over range (0.7; 
0.9) the value of  reaches approximately 2.5. The 
quantity  = (max q() / min q()also reaches 
almost the same values as  varies from 0.4 m to 
1 m. This indicates that the variability of the 
scattering factor K( m (), r, ) as a function of the 
parameters of the problem  and  is approximately the 
same. If, however, the presence of the factors 2

j  in 

Eqs. (6) is taken into account, the total amplitude of 
the function as a function of f should be much greater 
than its total amplitude as a function of the parameter 
, and this is confirmed by experimental studies.8 At 
the same time, it should be kept in mind that if in a 
full-scale experiment it is possible to obtain complete 
optical information, i.e., the collection of data {(j, 
tj), for i, j = 1,}, then this should be done. The 
subsequent inversion gives the family of distributions 
{N(r, tj) = Nj(r)} and the corresponding intervals 
{Rj = [Rij,R2j]} without any particular assumptions, 
for example, the equalities (4). Such microphysical 
information makes it possible to inverse problems for 
the equations of aerosol kinetics and to make a 
concomitant analysis of all physical processes 
determining the temporal variability of the spectrum 
over the of the experiment.3 

In conclusion we point out the fact that the 
computational-analytical approach developed above to 
inverse problems of the real (interacting with air) 
aerosol can also be used in those cases when the aerosol 
system interacts with physical fields other than the 
moisture field. In particular, we can cite a 
polydispersed system of particles in a gravitational 
field. For this system the time variability of the size 
spectrum is determined by sedimentation. It is 
pertinent to note that the condensation particle 
growth, which was studied above, is necessarily 
accompanied by precipitation of large particles and, 
therefore, our constructions were of a somewhat 
idealized character. Let us assume that initially at the 
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time t = t0 the size spectrum is described by the 
function s0(r) = r2n0(r), where R1,0  r  R2,0, if it 
is assumed that sedimentation of particles started at 
this time, then the optical characteristic of the 
polydispersed system under study can be represented, 
to a first approximation, by the parametric integral 
 

 (12) 
 
The application of this integral to the interpretation of 
optical data on the scattering of light by a liquid-drop 
aerosol, which were obtained in an artificial fog 
chamber, is given in Ref. 9. The unknown function 
R2(t) carries physical information about the state of 
the air. In particular, an empirical approximation of 
the form t–1/2, where the coefficient  is determined 
by the kinematic viscosity of the air, can be used for 
R2(t).

2,9 As previously, we are interested in the inverse 
problem for the vector t = {j = (tj, ), for 
j = 1,, m}, which is solved in order to determine 
the function R2(t), i.e., to obtain physical information 
about the medium in which the aerosol system resides. 
To employ the standard algorithmic schemes in 
inverting the integral (12), for example, the method of 
linear systems, the method employed must be put into 
an appropriate analytical form. This can be done by 
introducing an auxiliary function 
r(t, q) = R1 + (R2(t) – R1)q, where 0  q  1. 
Denoting (R2(t) – R1) by (t) we rewrite the 
integral (12) as follows: 
 

 (13) 
 

Since (t) decreases monotonically as t increases the 
transformations t   and   t are one-to-one and 
therefore by fixing in the experiment the times j-th we 
obtain from Eq. (13) a sequence of equations for the 
numbers j = (tj), namely, 
 

 (14) 
 
Equations (14) are analogous to equations of the type 
Eqs. (6) and can be studied and solved; numerically  
 

using the same methods as those described in detail 
above. By analogy to the preceding problem, the 
distribution n0(r) = n(r, t = 0) is assumed to be 
known. Another example of the possible use of the 
technique developed above for analyzing the inverse 
problems of aerosol optics and their numerical solution 
is the sounding of polydispersed liquid-drop aerosol 
interacting with a high-power radiation field.10 Now 
the radius of the drop r is a complicated function of the 
time t and the initial radius r0 = r(t = 0). Here the 
function r(t, r0, E),where E is the energy 
characteristic of the field, can no longer be represented 
in the form r = r0(E, t). True, this is of no 
fundamental importance for the formulation and 
solution of inverse problems. Since it is possible to 
construct an inversion scheme based on iteration 
processes of the type (7b) a nonlinear integral equation 
of a general form, namely, an equation of the type 
Hammerstein equation of the first kind, must be solved 
numerically. The analysis of such inverse problems of 
aerosol optics for aerosol interacting with physical 
fields falls outside the scope of this paper. 
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