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A Poisson model of multilayer broken clouds with correlations between layers is proposed. We
discuss the results of a numerical experiment, in which the radiative characteristics of two-layer clouds
are calculated by the Monte Carlo method. It is shown that the correlation between cloud layers can

substantially affect the mean radiative fluxes.

Introduction

The partial cloud cover can be present in the
atmosphere simultaneously at several levels. The
observations! show that the presence or absence of
clouds within different cloud layers can correlate. For
instance, the probability of simultaneous occurrence of
Cumulonimbus and Cirrus clouds in the tropics is quite
high; whereas the simultaneous presence of Cumulus
and Stratus anticorrelate. Also, it is well known that
one cloud type (such as Altostratus and Altocumulus)
can simultaneously be present at different atmospheric
levels, making up a multilayer (up to 4-6 layers) cloud
system, with length of the gaps between clouds ranging
from a few meters to a kilometer.

Despite the fact that the clouds at different levels
are either correlated or anticorrelated, general circulation
models (GCMs) of the atmosphere predict cloud fraction
independently in each individual layer, without taking
into account the vertical correlations between the
components of the complex cloud systems. The hypothesis
of random overlap, first formulated by Manabe and
Strickler? and widely used now in radiation calculations,
assumes that all cloud layers are independent. Its use
leads to overestimation of total cloud fraction. To
partially improve the results, Geleyn and Hollingsworth3
suggested an approach referred to as the “mixed overlap.”
Essentially, it uses the hypothesis of random overlap for
clouds from different levels, and the hypothesis of
maximum overlap for cloud layers at the same level. The
results obtained by Tian and Curry4 showed that this
brings the experimental and calculated total cloud
amounts into closer agreement. However, one should
remember that the hypothesis of mixed overlap (or its
modifications) can only be used for calculation of
radiative characteristics averaged over the area
comparable with that of GCM grid cell (usually, 300 to
1000 km?2 as large). For a more detailed study of the
influence of vertical cloud structure on the radiative
cloud effects, other approaches are required.

The existing methods of studying the radiative
transfer in the presence of multilayer clouds at the level

0235-6880,/02,/10 832-07 $02.00

of mesoscale processes can be conventionally divided into
two groups. On the one hand, those are the approaches
proposed, for instance, by Liang and Wang> and by
Stubenrauch et al.%; ultimately, they are based on
solution of equation of radiative transfer in a
horizontally homogeneous medium.

The methods of the other group calculate the mean
fluxes of solar and thermal radiation using the
mathematical models of stochastic cloud structure,
actively developed at present (see, e.g., Refs. 7-12) and
adaptable to treat multilayer clouds. Oreopoulos and
Barker!3 have suggested a model of multilayer clouds,
obtained using transects (along XOY plane) of
horizontally inhomogeneous cloud layer, in which the
distribution of optical depth is described by the gamma
distribution. The model considered in Ref. 14 assumes the
statistical independence of cloud fields, from different
layers. The model used in Ref. 15 makes it possible to
describe the radiation regime of correlated cloud fields;
however, it uses, as input parameters (precisely which are
“responsible” for the correlation of clouds at different
layers), the characteristics that are difficult to determine
experimentally.

In the present paper, the well-known Poisson
model of broken clouds is generalized for few-level
clouds. The model allows one to construct the
realizations of statistically independent cloud layers and
study the influence of correlations between clouds at
different atmospheric levels on the radiative transfer in
the cloudy atmosphere.

1. Poisson model of multilayer broken
clouds
1.1. Single-layer model

We will now describe the structure and properties
of a Poisson model of single-layer broken clouds
developed in Refs. 7, 16—19. Within this model, the
geometry of cloud field is described by the random
indicator function of the cloud occurrence «(r),
r=(x, y, 2), defined in the layer Hyp < z < Hy,p,. The
values of indicator function do not depend on z; while
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in the plane XOY within the simulation domain
[0, R,] x [0, Ry], they are determined via random field
E(p) =x(r), p=(x, y), constructed as follows. We
shall consider the Poisson point fluxes {x;} and {y;}
along the OX and OY axes, with the intensities A, and
Ay, respectively. In each rectangle [x;, xi+1]% [y, yj+1],
the random field £(p) assumes the value 1 (cloud is
present) with the probability p and 0 (cloud is absent)
with the probability (1 — p). For each rectangle, the
values of the indicator function are chosen independently.

Now remind the properties of a Poisson point flux
with the intensity A:

— the distance A between the neighboring points of
the flux is distributed according to the exponential law
(with the parameter A) with the density

e(A) = Aexp (- AN), A>0,
distribution function
D(x) =P{0<A<x}=1-exp (- AA),

mathematical expectation MA =1/A, and variance
DA =1/AZ2;

— the number n(L) of the points of the flux on the
set of length L satisfies the Poisson law with the
parameter AL:

Pn(L) = k) = exp (- AL) (AL)* /R, k=01, 2, ...,
whose mathematical expectation and variance are
Mn(L) = Dn(L) = AL,

i.e., the intensity of the Poisson flux A is equal to the
mean number of points on a unit interval.

Thus, the points of the Poisson flux on an interval
can be simulated in two ways: either successively (such
as in order of increasing magnitude) with the
exponential distribution between the neighboring
points, or by “seeding” the points uniformly on a
segment, with the number of points simulated
beforehand in accordance with the Poisson distribution.

For the first two moments of the £(p) field, the
following relations hold:

ME(p) = p, Mé&(py) &(py) =
=P{é(p1)= 17§(p2): 1}=PV(P1y p2)7 (1)

where p is the unconditional probability and V(py, py)
is the conditional probability of the cloud occurrence
(at a point py given that the point p, is in the cloud):

Vipy, p2) = PlE(p) = 1/&(p) = 1} =p + (1 = p) x
x exp{~ A,y — x| = 4, Ly =y}, (2)

Obviously, the cloud fraction N for this model is
given by the equality N = p; while the conditional
probability V(p¢, py) is more convenient in the form

Vipy, p2) = p + (1 = p) expi— Al@) x|p; — pol}, (22)

where
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o=(a b= -p)/lp—psl,

A(o) = A lal+ 4, lb].

Thus, the random function &(p) is statistically
homogeneous and anisotropic, and has the mathematical
expectation ME(p) = p, variance DE(p) =p (1 — p),
and exponential normalized correlation function

B(py, pp) = exp{~ A(@) x| p; — pyl}.

To adjust to experimental data, it was suggested in
Ref. 20 to use the empirical fit

A, =[1.65 (N - 0.5)* + 1.04] /D,,

A, =[1.65 (N - 0.5)% + 1.04] /D, )

where D, and D, are the mean horizontal sizes of an
individual cloud along OX and OY directions.

1.2. Multilayer clouds

Now describe the model of multilayer broken
clouds. We assume that each of the M nonintersecting
cloud layers occupies the region of the space

HW <z<HI, m=1,2, .., M,

where HﬁZ’Q and HE{{Q are the heights of bottom and top

of the mth cloud layer, and
HM < HEWV, m=1,2, .., M~ 1.

A modification of the Poisson model, proposed
here for multilayer broken clouds, is based on the
following main principle:

on the same realization of the Poisson fluxes {x;}
and {y;} (with intensities A, and A, along OX and OY
axes) for each layer an indicator function (field) &,,(p
), p=(x,y), m=1,2, ..., M, is constructed,;

the random vectors [E1(p), Ex(p), ..., Ep(p)] are
simulated independently for each rectangle
[, ] > Ly)y Y] the vector components themselves,
i.e., the values &,(p) for different m=1, 2, ..., M,
can be dependent.

Consider now the following model parameters:

pm = PEn(p) = 1},
Py = P{én(p) =1, é;m(p) =1}, (4)
Oum = P{én(p) = 1/§m(p) =1},
énm = P{&m(p) = 1/&_»;11([)) = 0}.

For these parameters, simple relations hold:

an = anmn = menmv

O € 10, min(p,,/pp, D1, Oy € [0, min(p,, /pyy,, D],

Pn= Qum Pm + @nm (a+ pm)~

The latter equality is proved as follows:
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Pn:P{in(P) =1} =P{§n(p) = 1/§m(p) = 1}P{§m(p) =1+
+ PE(p) = 1/8,(p) = 0} PE,(p) = 0} =
= Oum P + énm (- pm)-

The correlations between random fields &, and &,
are expressed as

Kum(p1, p2) = MIE,(p1) — ME,(py)] x
x [&m(p2) = ME,(p)] = ME,(p1) &u(p2) = PP =
= (pn O = Pu ) expf= A(@) x [py = pol}. (5)
Indeed,
P{E(py) = 1, £,(p2) = 1} = P{g,(py) = 1} x
x P{g,(p) =1/&,(py) = 1} =
= P AP{En(p2) = 1/E(py) = 1} x
x P&u(p1) = 1/&,(py) =1} +
+ PEu(p2) = 1/E,(py) = 0} x
x PEn(p1) = 0/E,(pp) = 1}}.

Taking into account expressions (2) and (2a) and the
fact that

P{E,(p) =1/6,(p) =1} + PE,(p) = 0/E,(p) =1} =1,
P{gm(p2) = 1/&1rz(p1) =0} =
= pw [1 = exp{= A(®) x [ p; = p}],

we obtain relation (5).
The mathematical expectation and variances of the
fields €,,(p), m =1, 2, ..., M, equal, respectively,

ME, (p) = Pm> DEg,(p) = Pm (1 - pm)-
The normalized correlation functions B,,,(p1, p2)
between indicators of different layers {&,,(p)},

m=1, 2, ..., M, have the form

B ( ) _ I<nm(p1r PQ) _
P P2 [DE(p) DE(p)

Pum = PuPm
= X
\/pn (- pn) Pm (1 - pm)
x exp{— A(®) x | p; = py|}. (6)

The correlation coefficients by, = B,,,(p1, p2) satisfy
the relation

/ in(py, Pm) = Pup

b el - pnpm , min nrm nrr'm X (7)
" |: (1_'”")(1_]7’") \/pn(1_pn)pm(1_pm)

The least possible value by, = — 1 is reached only when

pn + pm = 1 (SO that Qnm = an = O’ Qnm = an = 1)7
while the maximum value b,,, =1 is reached when

Pn= Pm (so that Oun = Omn =1, Opm = Opn = 0).
Overall, the Poisson model of M-layer broken
clouds is defined by the parameters A, and A4,
(intensities of point fluxes along OX and OY axes,
respectively), as well as by the probabilities
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PE,(p) = ay, m=1,2,..., M),

where a,,=0 or a,,=1, for oM possible combinations of
(ay, as, ..., app). Since

> PEp)=a, m=1,2, ..

a total of (2™ — 1) probabilities must be specified in
order to describe the Poisson model of the M-layer
clouds.

The cloud fraction of the mth layer N,, coincides
with the probability of cloud occurrence: N,, = p,,. The
total cloud amount p of M-layer clouds is defined as

p=1- P{é1(p) =0, §2(p) =0, ..., éM(p) =0}, (®)

while the range of p variations is given by

max(p1, P2y oo pM) = Pmax S P < Pmin =

M
= min (Z Dis 1). 9)
i=1

The quantities pyi, and ppay correspond to the total
cloud amount of M-layer clouds for hypotheses of
“minimum” and “maximum” overlap.

1.3. Two-layer model of broken clouds

Let us consider a two-layer cloud model in a more
detail. In this section, the subscript “1” will refer to
the lower layer, and subscript “2” to the upper layer.
Instead of the probabilities

P(ém(p) =dy, m=

where a,, is either 0 or 1, we can use as a model
parameter, the cloud fraction p; of one of the cloud
layers, and the conditional probabilities

Q;; = P{&i(p) = 1/¢i(p) = 1},

1,2),

0 = PiEp) = 1/5(p) =0}, i#].

The cloud fractions for different layers are related
as (see Ref. 4):

p1 =012 p2 + Opp (1 = po),
p2 = Oa1 p1 + Oy (1 = py).

According to relation (8), for total cloud amount p, a
number of simple relations can be obtained

p=PE(p) =1,8(p) =1} + P{g(p) = 1,E(p) = 0} +

+ P{E(p) =0, &(p) = 1} =py Oy + py (1 = OQyp) +

(10)

+py (1= Q) =pr+py—p2 O =p1+pr—py O =
=p1+p2— P “an
Thus, for instance, if the quantities pq, O9¢, and

Q¢ are known, then py [see Eq. (10)] and p can be
uniquely determined:
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p=p1+ 0y (1= pp. (12)

From Eq. (10) it follows that, for a fixed pq, the
cloud fraction p; depends both on Q, and Oy
(Fig. 1); whereas the total cloud amount p is
determined only by Qs [see Eq. (12)].

If Qyy=1 and Oy =0, then p = p1 = py, while
the correlation coefficient by = 1: thus, this cloud
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realization corresponds to the case when the cloud in
one layer over- (under-) lies the cloud in the other
layer. If Q91 =0 and Oy = 1, then pr=1-py, p=1,
and byy = — 1: thus, in this case the clouds in one layer
overly cloud gaps in the other layer (“checkerboard
pattern”). Figure 2 presents the realizations of cloud
field for intermediate values of conditional probabilities

Q21 and 621.

1 Qa1 Qa1 .
0.8 - 10 0.8
oS -09
o7 038
0.6 0.6
o607
B os5-06
0.4 0.4-05 0.4
0.3- 0.4
0.2-0.3
0.2 0.1 -0.2 0.2
[ 10.0-0.1
0 1 | 1 1 1 1 1 1

0 02 04 06 0.8 Oxn

0

0.0 (2%

a _
Fig. 1. Cloud fraction of the upper layer p, versus conditional probabilities Q21 and Q2 for different cloud fractions of the lower

layer: (@) py = 0.3 and (b) p; = 0.7.

Fig. 2. Cloud realizations in two-layer broken clouds. Cloud fraction of the lower layer p; =0.5: p; =0.5, p =0.75 (@) and

p2=0.7,p=0.85 (b).
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Note that a sufficient set of parameters of two-
layer model (M = 2) may include total cloud amount p
and cloud fractions p; (j =1, 2) of each of the layers
(this information is sufficient for describing the model
with the number of layers M in excess of two).

2. Mean solar radiative fluxes
for two-layer cloud model

In this section we present results of numerical
experiment using Monte Carlo method to estimate the
influence of variations of parameters Qy; and Qy; on
the mean albedo R (at the top of the atmosphere) and
diffuse transmittance Qg (at the surface level). In
analysis of the results we will keep in mind that the
increase (decrease) of Qo for a fixed Qo is equivalent
to increase (decrease) of cloud fraction in the upper cloud
layer p, for a fixed total cloud amount p [Eq. (11) and
(12)]. The variations of Qs for a given Qs suggest a
simultaneous variation of both py and p.

The mean fluxes of solar radiation at different
atmospheric levels are calculated for the model described,
e.g.,in Ref. 21. It was assumed that a unit flux of solar
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radiation is incident on the top of the atmosphere along
the direction @y = (&, ¢y), where &, and ¢ are the
solar zenith and azimuth angles. The calculations are
made for the following parameters: the lower cloud
layer is located at the height of 3 to 3.25 km, and the
upper level is at height 3.5 — 3.75 km; the extinction
coefficient in the cloud layers o is 20 km~!, absorption
in the clouds was not considered; the intensities of Poisson
fluxes A, and A, were calculated from formula (3)
assuming that the mean horizontal sizes of the cloud
elements D, = D, = 0.25 km for the lower layer. The
cloud field was simulated in a 3 x 3 km2 domain
assuming periodic boundary conditions. The scattering
phase function for Cy cloud (wavelength A = 0.69 pm)
from Ref. 22 was used as the cloud scattering phase
function. We present the calculated results for the
surface albedo A4 = 0.0.

Figure 3 presents the mean values of albedo R and
diffuse transmittance Qg as functions of conditional
probabilities 0< Q9 < 1 and 0 < Q9 < 1. If the parameter
Qo is fixed (i.e., the total cloud amount p is preset),
with the increase in Q9 the mean albedo may increase by
as much as approximately 0.1-0.15.

o R 021 Qs
1.0 1
] 0.54 — 0.57 0.8 0.86
S E (51 -0.54 o
S HE (.48 - 0.51 =
S N 45-048 06 072 3
s (42 -0.45 £
2 E (39-0.42 5
S W (36 -0.39 E
o> B 033-036 04 058 2
g B 030 -0.33 3
= 0.27 - 0.30 g
0.24-027 (2 0.44
0.21 — 0.24
0.18 — 0.21
L J0.15-0.18 0.33
0.8 021
a
0y R 0»1 Os
1 1.0 1
0.8 094 mmm 055-058 08 094
E B (52 -0.55 E
0.6 0.88 ¢ " 049-052 g4 0.88 £
[ [
S I 0.46 - 0.49 5
E 0.43 — 0.46 E
0.4 = 0.40 - 0.43 0.4 0.82 2
S 0.37 = 0.40 e
0 0.34-037 ), 0.76
[ J031-0.34
I 0.70 0.70
0 02 04 06 08 Oy 0 02 04 06 08 O
b

Fig. 3. Mean values of albedo R and diffuse transmittance Qg versus 0 < Q1 <1 and 0 < 621 <1 for a fixed cloud fraction of the
lower layer py = 0.3 (); and 0.7 (b). Solar zenith angle &, = 60°, cloud extinction coefficient c = 20 km™!, mean cloud sizes in the

lower layer D, = D, = 0.25 km, and the mean surface albedo A5 = 0.0.
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For a given Qi and increasing Q,q, the total cloud
amount p increases from p = py to p = 1. Therefore, the
greater the cloud fraction of the lower layer py, the less
the range of p variations, and, hence, the weaker the
variations of the mean albedo with the increasing Qo;.
The aforesaid is supported by calculated results on
albedo, presented in Fig. 3: the albedo increases by
~ 0.2 for p; = 0.3 and by » 0.05-0.07 for p; = 0.7.

As known, in single-layer clouds, the diffuse
transmittance, as a function of cloud optical depth
and /or cloud fraction, reaches a maximum whose
position and magnitude depend on solar zenith angle. A
similar Qg property is also observed for multilayer
clouds: for instance, the mean diffuse transmittance
depends nonmonotonically on Q,; (and hence on p) for
p1=0.3 and for a fixed Q1 > 0.3 (Fig. 3a). At small
and intermediate cloud fractions p < 0.5-0.6 (of course,
assuming that the cloud fraction in the lower layer py is
also small), an increase in Q5 leads to a growth of Qg;
whereas at p > 0.6, the reverse is true.

Let us discuss how the mean radiative fluxes,
calculated using the cloud model described above,
compare with those, calculated by the Poisson model of
broken clouds,!4 in which the cloud layers are assumed
statistically independent (the characteristics in the
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model of statistically independent layers!4 will be
denoted by the superscript ind). If the total cloud
amount p and cloud fraction of the lower layer pq are
kept constant, in the model with statistically
independent cloud fields the available information on p
and pq uniquely determines the cloud fraction of the
upper layer:

prt= (- p /U= pp.

Within the approach proposed here, for the same p
and py, there may be a family of models, each having
its own cloud fraction in the upper layer.

We will compare the mean radiative fluxes
calculated for the same p and p; (and the horizontal
cloud sizes selected accordingly for both models). If
Qy¢ varies in the entire range of possible values and,
hence, the cloud fraction of the upper layer varies in
the range 0 < py <1, then the difference of the mean
fluxes AF = F — Find, F=R,S, Qs may reach ~0.1-0.2
(Fig. 4). However, if assuming

021 =091 = —p) /U= py),

one obtains a model with correlated cloud layers in
which

pr=@—p)/U-pp.

021 Q21 AQy
1 1 1 '-' L s s o s
I 0.082 — 0.100
0.8 0.86 ) X . o ~o0.86
~ I 0.064 — 0.082 A N
£ I 0.045 - 0.064 - . E
06 0.70 £ 00273 - 0.045 06 —~0.72 &
= 0.0091 — 0.0273 | i =
8 [L7-0.0091 — 0.0091 E
0.4 0.58 2 -0.0273 - —0.0091 0.4 [ —0.58 5
£ W -0.045 - -0.0273 i i g
& -0.064 — —0.045 - =
0.2 0.44 - ~0.082 — —0.064 0.2 + —0.44
R0 00 -_A_L‘
0.33 0.33
0 02 04 06 08 O 0 02 04 06 08 O
Qa1 AS b
a 1 T l T I T I T 1
I 0.164 - 0.200
I 0.127 - 0.164
0.8 —0.86 B 0.091 - 0.127
5 J ; 0 0.055 — 0.091
s 0.0182 — 0.055
(=]
o6 =+ 072 g ~0.0182 — 0.0182
- b ‘g -0.055 — —0.0182
0.4 S I -0.091 — —0.055
S N -0.127 - —0.091
= M -0.164 — —0.127
0.2 B 0.200 — —0.164
0 02 04 06 08 008

C

Fig. 4. Difference between mean albedos (a), diffuse transmittances (b), and nonscattered fluxes (c), calculated in the cloud model

suggested here and in the model by Titov!4: AF =F — il

parameters being the same as in Fig. 3.

, F=R, Qs, S. The calculations are made for py=0.3; the other
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Thus we have discussed two models, the model by
Titov!4 and the model proposed in this paper; these

have the same p, py, and py = plznd, and differ in that in
the latter model the cloud realizations within the upper
and lower layers are constructed on the same Poisson
point fluxes. The calculated results show that, when
po=p4 the differences between transmitted (both
diffuse Qg and nonscattered S) and reflected fluxes,

calculated in the two models considered here, are within

0.01-0.02. This suggests that, at py = pi¢, the mean
radiative fluxes little depend on how the cloud
realizations in the upper layer are constructed.

Conclusion

The model of multilayer broken clouds proposed,
based on the Poisson point fluxes, has the following
features:

— the input model parameters have clear physical
meaning and may be quite easily determined from the
experimental data; and

— the model allows for a wide range of correlations
between different cloud layers, constituting a natural
generalization of the known single-layer Poisson model.

This model can be used to study the processes of
radiative transfer in multilayer clouds, caused by the
presence of correlations between clouds at different
atmospheric levels. In particular, our calculations using
the model of two-layer clouds have shown that, for
fixed cloud fractions of the lower layer and total cloud
amount (it is exactly the two characteristics that are
followed up at meteorological stations) correlations
between the cloud layers can substantially affect the
radiative characteristics of a cloud system.

Now we would like to conclude by noting that the
absence of sufficient information on probabilistic
characteristics of the spatial structure of cloud fields is
the common problem in model development and testing.
However, the fact that recently the integrated studies
of complex cloud systems have been receiving more and
more attention (see, e.g., Refs. 23-25) proves the
grounds to believe that such information will be obtained
and, as a consequence, more adequate stochastic cloud
models will be developed in the nearest future.
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