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The results of numerical modeling of aerodynamics and pollution transfer in urban built-up areas 
are presented. The spatial microscale model includes Reynolds equations for aerodynamics prediction 

and “k–ε” two-parametric turbulence model. The numerical solution of the equations is based on the 
finite volume method. The mathematical model was verified by a set of experiments. Besides, the 

microscale model was compared with the field data, obtained within the TRAPOS (Optimization of 
Modeling Methods for Traffic Pollution in Streets) project. 

 
 

The aim of the work and mathematical 
statement of the problem 

 

The vehicular emission becomes the main source 
of the urban air pollution. Street canyons are among 
key urban elements, where the traffic is relatively 

heavy and the pollution effect on a human organism 
increases significantly. The scenario analysis and 

forecast of air pollution in street canyons allow us to 
determine adverse conditions with formation of locally 
high exhaust concentrations, as well as to take into 
account natural ventilation of urban quarters when 
planning urban relief. 

To investigate the propagation character of 
gaseous traffic-induced air pollutants in built-up  
areas, mathematical modeling methods1–3 are widely 
used along with experimental ones; they include 

hydrodynamic equations, turbulence models, and 

turbulence diffusion equations. At present, microscale 
meteorological models are of significantly growing 

interest owing to prospects of their use to develop 

reliable schemes of urban boundary layer parameterization 
for mesoscale atmospheric models.4 

A spatial microscale model and calculation technique 
for flows around obstacles and in street canyons are 
described in this work, as well as their experimental 
validation.  

The microscale aerodynamics and pollutant transfer 
model is based on stationary three-dimensional Reynolds 
equations, two-parameter “k–ε” turbulence model,5 and 

advection-diffusion equation; principal thermophysical 
properties are considered here as constant. Mass, 
momentum, and pollutant concentration conservation 

equations have the following form: 
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Here Ui and C are the average components of 
velocity and pollutant concentration, respectively; ui′ 

and c′ are the fluctuations of components of velocity 
and concentration; ρ is the liquid density; P is the 
pressure; ν and D are the molecular kinematic 
viscosity and molecular diffusion, respectively; xi are 
the Cartesian coordinates; S is the constant intensity 
source. The summation from 1 to 3 in Eqs. (1)–(3) is 
carried out over the repetitive index j. 

Reynolds stress i ju u′ ′  and turbulent diffusion flows 

ju c′ ′  are modeled using the Boussinesq closure relations: 
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The two-parametric turbulence model has the 
following form5: 
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where k and ε are the turbulent kinetic energy and 
turbulent dissipation, respectively; constants Ñμ = 0.09, 
Ñ1 = 1.44, Ñ2 = 1.92, σk = 1.0, σε = 1.3, and Sct = 0.7. 
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  Moving vehicles are not only sources of pollutant 

emissions into the atmosphere, but also generators of 
the so-called mechanical turbulence, caused by the 
air disturbance as a result of motion of a finite-length 
objects having a significant resistance. In this work, 
this factor is taking into account (like in Ref. 3) by 
adding the corresponding terms into the “k–ε” turbulence 
model. To take into account the traffic-induced 

turbulence kinetic energy, the term ÑcarVcar

2
Qcar is 

added to the right part of Eq. (4) and the term, 
responsible for dissipation of turbulence mechanical 
energy, – to Eq. (5) in the form ÑcarVcar

2
Qcar(ε/k), 

where Ñcar = 0.0015 is the empirical coefficient,3 Vcar 
is the vehicle speed, Qcar is the number of vehicles 
per second (in calculations Vcar = 8.333 m/s and 
Qcar = 0.347 [Ref. 6]). 

Zero normal derivatives are the edge conditions 
at the outlet from the area under study and at open 
side boundaries, while at the entrance and on rigid 
surfaces they have the following form:  

– at the entrance at x = x1: 

 1 3( ),inU U x=  2 3 0,U U= =  0,C =  

 3( ),ink k x=  3( );in xε = ε  

– on a rigid surface: 
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where Uin, kin, εin are the known functions of the 
vertical coordinate x3; n is the vector normal to the 
boundary; x3 is the vertical coordinate. 

The method of Launder–Spalding wall functions5 
is used to calculate turbulent parameters of a flow 
near a wall. 

 

Calculation technique and results 
 
Differential equations are discretized by the 

finite volume method,7 and the convective terms of 
transfer equations are approximated by the Van Leer 
MLU scheme.8 Integrals are calculated using 

piecewise-linear profiles, describing variations of a 
dependent variable between nodes. Such integration 
results in a discrete analog of differential equations, 
which contains variable values at several neighboring 
nodes. To solve it, the fictitious domain method was 
used, the idea of which is in the fact that vector and 
scalar quantities in the obstacle area are equal to 
zero; and the diffusion is lacking in fictitious finite 
volumes. The system of finite-difference equation is 
solved by the Buleev explicit method.10 

Flows around bluff bodies include complex 
phenomena, for example, separation and joining of 
flows, formation of transient eddy, increased 

turbulence level. It is natural that there is a practical 
need in forecasting such flows, though this problem 
is complicated even for relatively simple geometries. 
  To test the microscale model of atmospheric 
boundary layer, a flow around a cube (of the height 
h, located in a channel of 2h in height and 4h in 

width, a distance between the cube front face and 
input boundary of 60h) is considered in this work 
(Fig. 1). For this geometry, the Reynolds number 
Re = Ubh/ν = 40000, Ub = 28.8 m/s is the average 
flow speed at the channel entrance. The results of 
experimental study of this flow are given in Ref. 11. 
A grid of 97×82×42 in size was used for calculations, 
which, along with measurements, have shown that a 
quite complex flow is observed even for a simple 
geometry (see Fig. 1). 
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Fig. 1. Schematic view of the flow around the cube.11 

 

While moving, the flow is separated at the cube 
front face with formation of the secondary 

recirculations at the upper cube face, near its side 
faces, and at the lower part of its front face (Fig. 2). 
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Fig. 2. Vector velocity field at the plane õ2 = 0 for the flow 
around the cube. 

 

The main vortex in the trail behind the cube has 
a horseshoe shape. A large isolated zone is developed 
there, interacting with the horseshoe-shaped vortex. 
In addition, an arc-shaped vortex is formed in the 
recirculation zone (Figs. 1–3).  

Calculations show that the commonly used “k–ε” 
model inadequately simulates a flow and turbulent 
structure in the area with recirculation liquid 

movements (Fig. 4).  
This is well seen when considering the kinetic 

energy level behind the cube (Fig. 5). 
Such behavior is explained by the fact that the 

two-parametric model forecasts significantly less level 
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of kinetic energy generation behind the obstacle than 
its real value. As a result, the turbulence viscosity 
decreases and a vortex trail behind the cube increases. 
Nevertheless, it can be expected that some modifications 
of “k–ε” model, convenient in calculations, can result 
in more plausible model data.12  
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Fig. 3. Vector velocity field for the flow around the cube at 
õ3/h = 0.075. 
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Fig. 4. Longitudinal velocity component U1 for the flow 
around the cube: model calculations (—) and experimental 
data11 (•). 

 
Realizing the importance of testing the 

mathematical models for solving the problem of 
pollutant propagation in urban areas, a team of 
scientists, working within the TRAPOS Project 
(Optimization of Modeling Methods for Traffic 

Pollution in Streets),13 has prepared a number of 
tests, including comparison between experimental and 
calculation results. The most complicated case is the 
study of pollutant aerodynamics and transfer in the 

built-up area around the Gettinger street in Hannover 
city. The field14

 and laboratory data15 on the pollutant 
concentration in a point near some pollutant source, 
as well as meteorological data recorded over the 
highest building’s roof are available for solving  
this problem. 
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Fig. 5. Turbulent kinetic energy for the flow around the 
cube: model calculations (—) and experimental data11 (•). 

 
Figure 6 presents the vector field of horizontal 

velocity component and dimensionless pollutant 
concentration ñ* = ÑVrefH/(Q/L) (Vref = 10 m/s is 
the characteristic velocity at a height of 100 m; 
H = 20 m is the average building height; Q is the 
intensity of vehicular emission; L = 180 m is the 
linear source length). 

The incoming flow is directed from the south to 
north. A geometrical model, used for calculations, is 
a precise replica of the Gettinger street (see Fig. 6). 
The detailed description of this case, including edge 
conditions and parameters of the surface roughness 
have been obtained from Internet (TRAPOS database).13 
The calculations show a complex turbulent motion of 
air masses (see Fig. 6). Formation of vortex structures 
near quoins is seen, as well as air mass involvement 
in recirculation motion at the opposite side of the 
street, which results in vehicular pollution accumulation. 
At such direction of main airflow motion, traffic-
induced pollutants do not get to courtyards, but are 
drifted along the street, increasing the concentration 
near the left side of the street.  

Figure 7 presents the results of comparison of 
calculated and measured values of wind velocity and 
turbulent kinetic energy over the meteorological mast 
(see Fig. 6). 

As is evident from Fig. 7, the wind velocity 
component U3 is slightly overestimated, while other 
components virtually perfectly coincide with the 
measured values. However, the calculated turbulence 
energy (Fig. 7b) is underestimated in the area close 
to the roof of the highest building, where experimental 
data show high levels of k. Addition of the source 
term (Fig. 7c), simulating traffic-induced generation 
of turbulence energy, results in the increase of total 
turbulence level, though the underestimation of k 
remains. 
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Fig. 6. Surface velocity field (a) and concentration  
levels (b) in the Gettinger street; � marks a meteorological 
mast (õ3 = 10.5 m). 
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Fig. 7. Wind velocity components (a) and kinetic energy 
with (c) and without (b) mechanical turbulence: model 
calculations (—) and experimental data15 (�). 

 

Conclusion 
 
The results of application of the microscale 

aerodynamics and pollutant transfer model in built-
up areas are presented. The calculations for two 
complicated geometries were carried out; advantages 
and disadvantages of the model were revealed. It was 
shown that the standard “k–ε” model reproduced 
recirculation flows inadequately. In addition, the 
effect of traffic, generating additional turbulence, on 
the flow turbulent structure has been studied for the 
real case. A good agreement with experimental data 
was obtained. However, the suggested mathematical 
model for flow turbulent parameters is to be 
improved, because small differences in flow pattern 
and velocity direction can result in incorrect forecast 
of traffic-induced pollutant propagation in urban 
built-up areas. 
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