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Applicability of the parabolic approach (PA) to solution of field problems near 
the geometric focus is considered. A version of quantitative criterion is given. It was 
shown that the discrepancy between the exact solution and the PA: a) generally 
speaking is always present that is connected with the pemature truncation of series for 
the phase of the Green's function and boundary field; b) is unessential if the boundary 
field and the Green's function has a spherical wavefront; c) can reach considerable 
value if that and/or other wavefront becomes nonspherical; and, d) is the larger the 
more characteristic boundary and focal size differ due to beam focusing.  

 
1. INRODUCTION  

 
The parabolic approach (PA), which uses parabolic 

equations instead of the hyperbolic ones that are typically 
used in the problems of wave propagation has become very 
popular in atmospheric optics.1,2 The same approach is well 
known in the diffraction theory,3 nonlinear optics,4,5 
electrodynamics of turbulent media,6,7 in analysis of 
Gaussian beams, and in quasioptics.8 The main idea of the 
approach comes from an earlier work,9 and its mathematical 
aspects are excellently discussed in Ref. 3. A very close 
subject, i.e., a detailed analysis10 and some results of it are 
demonstrated in Section 2. Introduction of the PA itself is 
possible by different methods: such as comparison with test 
solutions,3 transformation of the Green's function,6 and 
separation out the oscillating factor,4 and the like.  

Having such a vast literature on the problem it could 
seem that no problems can arise on the conditions of the PA 
applicability. However, as it becomes clear now, the 
situation occurring in the vicinity of convergence of 
geometrical optics rays (caustic, focus) has to be drastically 
revised.  

 
2. SHORT REVIEW OF THE PROBLEM  

 
Let the wave equation (for monochromatic case) of 

hyperbolic type be the initial equation  
 

ΔΨ(r) + k2m2Ψ(r) = 0, (1) 
 
where k = 2π/λ, m(r) is the refractive index at the point r, 
and the scalar version is accepted only for simplicity. 
Transition from Eq. (1) to an approximate equation is 
performed according to almost standard scenario. Assume that  

 
Ψ(r) = U(r)exp[ikS(r)] (2) 
 
and after substitution of Eq. (2) into Eq. (1) it becomes  

 
ΔU + 2ikgradUgradS + ikUΔS + k2m2U – k2U(gradS)2

 = 0.(3) 
 

Of course, there are no formal prohibition to write 
Eq. (2), but it is necessary "to say something" about, for 
example, S, otherwise Eq. (3) will have two unknown 
functions. Born and Wolf11 consider that exp(ikS) 
"involves most oscillating part of Ψ", i.e., U is more slow 
(compared to exp(ikS)) function. Therefore, the relations  

(gradS)2 = m2, n = 
1
m gradS, n is ort (4) 

 
defining the S value and assumptions on the validity of 
conditions  

 

⏐ΔS⏐ n 
1
L ⏐gradS⏐, 

∂2U
∂l2

 n k 
∂U
∂l  (5) 

 
seem to be reasonable. In Eq. (5) ∂/∂l is the derivative 
along the direction n, and L is the distance at which U 
noticeably changes (i.e. ⏐gradU⏐ = 0(U/L)).  

Really relations (4) eliminates the summand ∼ k2 (the 
most explicit source of oscillations) from Eq. (3). The 
physical meaning of Eq. (4) is well known, i.e., there 
appears eikonal S and a wave propagates along n 
perpendicularly to the surface S = const. It is assumed, of 
course, that Eq. (4) has the unique solution.  

Now, Eqs. (3), (4), and (5) yield  
 

Δ
⊥
U + 2ikm 

∂U
∂l  = 0 (6) 

 
of the parabolic type and Δ

⊥
 is the Laplacian of "transverse" 

relative to the n coordinates.  
Mathematical arranging of similar considerations can 

be associated with the integral equation equivalent to 
Eq. (1) (see, for example, Refs. 11 and 12). After its 
substitution Eq. (2) reduces the investigation of Ψ to 
integral  

 

⌡⌠
 dρdqΓ(k, q)[m2(r – ρ) –1]U(r – ρ) × 

 
× exp[ikS((r – ρ)]exp(iqρ) . (7) 
 

Here, Γ is the Fourier transform of the Green's function 
of the Helmholtz operator (Eq. (1) for m = 1 and q = 0(k)), 

V is the region where m ≠ 1, and, of course, k
3
V . 1 is the 

necessary condition of the approach. The latter provides the 
effectiveness of the asymptotic estimation (7).  

Let us first assume, that Eq. (4) has one solution (this 
justifies Eqs. (2) and (7) and fulfilment of conditions (5)). 
The first of conditions (5) allows one to reduce S(r – ρ) to 
a linear function of ρ, when estimating by Eq. (7), and  
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relations (4) enables one to prove the fact that the first 
derivative of the function in the exponent has no zeros inside 
the V region. The second of conditions (5) confirms that U 
has no points of branching (of "pole" or "zero" types). 
Therefore, Eq. (7) is estimated as a Fourier integral, and  

 

U = ∑
n=0

 ξn Un(r), ξ = 1/ik  (8) 

 
becomes a regular function along ξ.  

However, if one assumes Eq. (8) or, more generally, 
the regularity of Ψ along ξ then the standard theorems from 
the theory of analitical functions13 will confirm the 
uniqueness and finity of S and U. The regularity of Ψ gives 
a possibility of equalizing coefficients at equal degrees of ξ. 
This, in turn, yields both Eq. (4) and the recursion chain  

 
2grad Un gradS + UnΔS + ΔUn–1

 = 0, U
–1

 = 0, (9) 

 
whose initial step (n = 0) corresponds to geometrical optics.  

Therefore, the necessary and sufficient condition of 
existence of Eqs. (2) and (3) is the regularity of Ψ. This by 
no means guarantees the validity of Eq. (6). but Eqs. (2) 
and (3) are make the basis for an asymptotic analysis, 
formally as k → ∞, leading to Eq. (6). Pragmatic 
significance of such an action is quite clear. Actually, one 
could hardly hope to proceed far from the initial n = 0 in 
Eq. (9) while it is well known that Eq. (6) is more accurate 
than the geometric optics approach.  

The other side of the discussed subject (according to 
the meaning of terms necessity and sufficiency) is 
underlined by understanding that regularity of Ψ disappears 
when conditions (5) are violated. Really, now one must 
write, when estimating by Eq. (7), in the argument of the 
(exp) the function of squared (at least) ρ and make choice 
of the method of steepest descent that will drastically 
change Eq. (8). First, this leads to appearance of fractional 
degrees of ξ and the same will happen when the second of 
conditions (5) is violated. Second, the presence of two 
equivalent points on the saddle make the eikonal ambiguous 
and, therefore, one must write  

 
Ψ = U

1
exp(ikS

1
) + U

2
exp(ikS

2
) (10) 

 
instead of Eq. (2). It is clear now that substitution of 
Eq. (10) into Eq. (1) by no means can lead to Eq. (6).  

This statement may be interpreted in terms of 
differential geometry.10 As it can be shown there, 
curvilinear coordinates exist, i.e., the eikonal S itself and 
the polar components (β and γ) of the ort n. The 
corresponding axes are in the plane tangent to the surface 
S = const. It is absolutely evident from Eq. (4) that the 
condition of S unambiguity is J ≡ D(r)/D(S, β, γ) ≠ 0 for 
the Jacobian of transformation of the Cartesian coordinates 
to the curvilinear ones. The same condition provides 
unambiguity and finiteness of Un. As it follows from 

Eq. (9), Un ∼ J
–1/2–σn (when σn > 0). In the vicinity of 

J = 0 naturally S losses its unambiguity, and therefore one 
is forced to use the version (10).  

Thus, the mathematical equivalence of the conditions 
J ≠ 0 and "regulariry of Ψ on ξ" becomes clear. The 
constructive aspect of this situation is that J ≠ 0 where 
div(mn) cannot be large, i.e., at points far from caustics 
and focuses. Relationship of the latter regions, physical and 
mathematical, to the value of div(mn) is quite 
evident.10,11,14  

Thus, the previous analysis has evidenced that Eq. (6) 
cannot be treated as an approximation of Eq. (1) at points 
of convergence of geometric optics rays. In fact, this 
circumstance is repeatedly and persistently underlined in 
Ref. 3. But, certainly, it should be noted that Eq. (6), 
written "by itself" has some solutions at points of the rays 
convergence (they are not peculiar for Eq. (6); the same 
follows from the differential geometry analysis), and, 
moreover, the solution structure underlines its explicitly 
"diffractional" origin ("diffusion" into the region of 
geometrical shadow, "neck" near the focus and the like). 
Probably, just this creates an illusion of versatality of the 
parabolic approach.  

However, a possibility of applying the boundary 
conditions in such a specific way (expansion of the Green's 
function and so on) that could result in quite correct 
numerical results. This approach is excellently demonstrated 
in Ref. 3, where equations of the parabolic type are used for 
investigation of diffraction on the absolutely reflecting 
objects.  

This quite general (and, in a way, preliminary) 
considerations define more precisely and illustrate the 
problems from Sections 3 and 4, and summary of the whole 
discussion is given in Section 5.  

 
3. SPHERICAL FOCUSING INTO HOMOGENIOUS 

MEDIUM  
 

Let z = 0 be the interface between two media. At z < 0 
m

1
 = 1 and for z > 0 m

2
 ≡ M > 1. According to Kirchhoff–

Helmholtz theorem for all z
0
 . 1/k [Ref. 4]  

 

Ψ(r
0
) = – 

ikz
0
m

2π  ⌡⌠
 –∞

 +∞

 ⌡⌠A(x, y) 
exp(ikS)

R2  dxdy . (11) 

 
Change of amplitude A at the interface is neglected 

and the field at z = 0 (in the first medium) is assumed to be 
a converging spherical wave  

 

Ψ⏐
z=0

 = A(x, y)exp(–ikRf) . (12) 

 
In Eqs. (11) and (12) r

0
(x

0
, y

0
, z

0
) is the observation 

point; S = mR – Rf , R = z2
0
 + r2 , Rf = f 2 + ρ2, 

r2 = (x – x
0
)2 + (y – y

0
)2, ρ2 = x2 + y2, and f is physically 

analogous to focal length.  
A standard condition  
 

r/z
0
 ∼ ρ/f n 1 (13) 

 
allows one to write  
 

R g z
0
 + 

r2

2z
0
 – 

r4

8z
0
3 + ... , Rf g f 2 + 

ρ2

2f – 
 ρ

4

8f3
 + ... (14) 

 
where the first two terms correspond to the PA.  

Let us consider the field only on the optical axis 
(x

0
 = y

0
 = 0 and ρ = r). Then passing to polar coordinates 

ρ and θ, as well as separating out the large value (mz
0
 – f) 

from S and assuming the condition (1/R2 g 1/z
0
2) holds 

quite accurately one obtains from Eq. (11) the variant 
which we assume the exact solution  
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Ψ(z
0
) = – 

ikm
2πz

0

 exp[ik(mz
0
 – f)] × 

 

× ⌡⌠
0

2π

 ⌡⌠
0

∞

 A(θ, ρ)exp(ikS)ρdρdθ , (15) 

 

where S ≡ St = m z2
0
 + ρ2 – f 2 + ρ2 – (mz

0
 – f). The 

approximate solutions differ from that given by 
formula (15) only by the form of S. Thus, the parabolic 
approach is represented by  

 

S ≡ Sp = S
1
ρ2, S

1
 = 

1
2 ⎝
⎛

⎠
⎞1

f – 
m
z
0

 . (16) 

 

For the subsequent approximation from series (14)  
 

S ≡ Sm = S
1
ρ2 + S

2
ρ4, S

2
 = 

1
8 ⎝
⎛

⎠
⎞1

f 3
 – 

m
z3
0

 . (17) 

 

In general, solutions (15)–(17) can be investigated 
only numerically and since exp(ikS) oscillates quite rapidly, 
the methods themselves and programs for their execution 
needs for verification.  

In a sufficiently general case of A(θ, ρ) ∼ exp(–ρ4/a4) 
the amplitude of the field (15) and S defined by 
expression (17) can be analitically represented by  

 

⏐Ψ(z
0
)⏐ ≡ A

0
 = 

km
4z

0
 

πa4

1 + (kS
2
a4)2

 ⏐ω(z)⏐ , (18) 

 

where ω(z)= exp(–z2)

⎣
⎢
⎡

⎦
⎥
⎤

[1 + 

2i

π
 ⌡⌠
0

z

exp(t2)dt =exp(–z2)erfc(–iz) 

is well–known function [15] of complex argument  
 

z = –kS
1
a2/2 1–ikS

2
a4 .  

 

Note that the phases of solutions are not considered here 
just for reasons of saving room.  

In the PA (i.e., for S from formula (16)) the solution is 
obtained from relation (18) at S

2
 = 0.  

Dependences of ��(z
0
)� on z

0
 values in the vicinity of 

z
0
 = mf computed by direct integration of Eq. (15) for three  

types of S (formulas (15)–(17)), are shown in Fig. 1. Dots in 
this figure show the amplitude values obtained from 
relation (18) using tables and the values S given by 
expressions (16) and (17). Errors of calculations by both 
methods do not exceed 1 per cent. In fact there no any 
noticeable difference between the curves calculated using 
S = St and S = Sm.  

 

 
 

FIG. 1 Dependence of the axial amplitude A
0
 of a beam on 

the value Δ = (z
0
 – mf)⋅1000. 1) S = Sp (formula (16)), 

2) S = Sm (formula (17)), and 3) S = St (formula (15)). 

Amplitude of the boundary field ~exp(–ρ4/a4), a = 2 cm, 
f = 30 cm, and m = 1.5. The dots show the values obtained 
from Eq. (18).  
 

Some results of numerical computer simulations are 
presented in two next figures. A comparison of the exact 
solution and the PA obtained for varying geometrical 
divergence α = a/f of the boundary field is given in Fig. 2. 
An example of calculations made for a = const is shown in 
Fig. 3. The computations have been done for a Gaussian 
amplitude A ∼ exp(–ρ2/a2) relevantly corrected for the 
change of a beam size at focus.  

Figures 1 and 3 quite clearly show the situations in 
which the parabolic approximation is inapplicable, of course, 
we mean a description of the field at focus. It is evident that 
the criterion of the PA quality is  

 

κ = kρ 4
max

⏐S
2
⏐ n kρ 2

max
 ⏐S

1
⏐ . 

 

   
 
FIG. 2. Dependence of amplitude A

0
 on the value Δ (1) PA and 2) exact solution) at different values of the geometrical 

divergence α = a/f: α = 2/30 (a), 2/45 (b), and 2 cm/70 cm (c). The boundary beam is of Gaussian type and m = 1.5.  
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FIG. 3 Dependence of amplitude A

0
 on the value Δ (1) PA and 2) exact solution) at a fixed geometrical divergence 

α = (a/n)/(f/n) = 2/20: n = 1 (a), 3 (b), and 9 (c). The boundary beam is of Gaussian type and m = 1.5.  
 

Within a small region around the geometrical focus  
 

κ → κf ∼ kα3a(1 – 1/m2) n 1 . (19) 

 
The condition m ≠ 1 becomes principle what excellently 
agrees with the discussion in Section 2.  

 
4. CONVERGENT ELLIPTICAL BEAMS IN AN 

ANISOTROPIC MEDIUM  
 

Solution of this problem is reduced to taking the 
integrals of the type (15) with the function  

 

S = z2
0
 + bx2 + dy2 – f 2 + lx2 + ty2 .  

 
Again, x

0
 = y

0
 = 0, constants b and d determine the 

medium anysothropy, and l and t describe the ellipticity of 
the boundary field. If a spherical wave is focused into a 
uniaxial medium with the main optical axis along the x 
axis, then d = l = t = 0 and in an approximation, similar to 
(17), we have  

 

S = –S
1
x2 + S

2
x4 + S

3
x2y2 + 

~
S(y),  

 

where S
1
 = 

1
2⎝
⎛

⎠
⎞1

f – 
b
z
0

 , S
2
 = 

1
8⎝
⎛

⎠
⎞1

f 3
 – 

b2

z3
0

 , S
3
 = 

1
4⎝
⎛

⎠
⎞1

f 3
 – 

b
z3
0

 ,  

 
~
S(y) = 

y2

2  (1/f – 1/z
0
) + 

y4

8  (1/f 3 – 1/z3
0
) .  

 
Such a structure of S gives rise to two focuses: at 

z
0
 ∼ bf there is minimum beam size along the x

0
 axis and at 

z
0
 ∼ f along the y

0
 axis. Numerical integration shows that at 

z
0
 ∼ bf ⏐Ψ(z

0
)⏐ is of the same character as in Section 3. 

Applicability of the PA near this focus is governed by 
condition  

 

κ
f
 = k⏐S

2
⏐x 4

max
⏐

z0=bf
 ∼ kα3a 

(b – 1)
b  n 1 . (20) 

 
5. DISCUSSIONS  

 
One can separate out a circumstance common for the 

problems in Sections 3 and 4. Originally spherical (or 
approximately parabolic) wavefront experiences certain 
aberration that causes oscillations near focus which the PA  

is unable to trace. Since the origin of aberrations has no any 
qualitative significance on can state that the problems 
dealing with arbitrary (nonspherical) wave beams should be 
solved using more general than the PA methods. The values 
like those given by relations (19) and (20) will serve as 
quantitative criteria. However, some modificaions can also 
be used under other boundary conditions.  

As follows from relations (19) and (20), inaccuracy of 
the PA increases with geometrical divergence (angular 
spectrum) of the external field that well agrees with the 
discussion in Ref. 4. At the same time data presented in 
Fig. 3 make one introduce a correction. Thus, e.g., the use 
of the PA is justified if the characteristic size a of a beam 
on the boundary surface and at focus ρ

0
 differs not very 

much, i.e., (for example, for a Gaussian beam)  
 

η = ρ
0
/a ∼ ( )2f

ka  
1
a = 

2
ka 

1
α  1 . (21) 

 
In other words, since in Eq. (21) (2/ka) ≡ ϕ is the 

diffractional divergence of the external beam the 
geometrical divergence must be not merely small, but close 
to the diffractional one.  

It is interesting to note that, virtually, similar 
conclusion can be drawn from the necessary PA 
condition (13) itself. The latter can be presented in an 
equivalent (in the sense that the expansions of R and Rf 

will not differ from inequality (14)) form  
 

⏐x⏐
z
0

 ∼ 
⏐y⏐
z
0

 ∼ 
⏐x

0
⏐

z
0

 ∼ 
⏐y

0
⏐

z
0

 ∼ 
⏐x⏐
f  ∼ 

⏐y⏐
f  ∼ 

a
f n 1 . (22) 

 
It follows from inequality (22) that the transition to 

the PA is quite faultless mathematically only under 
condition (21). If there appears strong focusing (η n 1), it 
is necessary to replace inequality (22) by  

 

⏐x⏐
z
0

 ∼ 
⏐y⏐
z
0

 ∼ 
⏐x⏐
f  ∼ 

⏐y⏐
f  ∼ 

a
f n1, 

⏐x
0
⏐

z
0

 ∼ 

⏐y
0
⏐

z
0

 ∼ ( )af
j

 n 1 , (23) 

 

where j takes values from 1 (for α = ϕ) up to, generally 
speaking, any large number depending on α and a from 
Eq. (21).  

Using inequalities (23), it is easy to understand why 
the representation of S in the form of Eq. (17) becomes 
more accurate than Eq. (16), which results, when passing to 
the PA, in mathematical incorrectness leading to errors in 
final results. Really, assuming α = 10–1 for a = 1 cm, we  
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can see from Eq. (21) that ρ
0
 ∼ 0.2⋅10–3 cm, and, 

consequently, j in inequalities (23) cannot be less than 4. 
This means that the expansion of R used in the PA  

 

R g z
0⎣
⎡

⎦
⎤1 + 

(x – x
0
)2 + (y – y

0
)2

2 z2
0

  

 
contains terms xx

0
/z2

0
 ∼ yy

0
/z2

0
 of the minus fifth order of 

magnitude according to inequalities (23). The error is 
evident, for the next term of the expansion (the same is 
valid for Rf, see inequalities (14)) of the type (x2 + y2)/8z4

0
 

is of the minus fourth order of magnitude according to 
inequalities (23), i.e., the truncated terms exceed in value 
the remaining ones. Such an inaccuracy is the more essential 
the stronger the focusing and the larger the beam size is on 
the boundary. These conclusions are also evident from 
relations (19) and (20).  

There is another quite curious point. When m = 1 the 
function S from Eq. (15) is represented in the PA in the 
form  

 

S = R – Rf g z
0
 – f + 

(x – x
0
)2 + (y – y

0
)2

2z
0

 – 
x2 + y2

2f  . (24) 

 
As a matter of fact, it follows from the above discussion 

that there were done two errors at a time, when writing 
Eq. (24), i.e., the series (14) for R and Rf were truncated. 

However, here these errors compensate each other –κf = 0 and 

Eq. (24) is not worse than S = R – Rf. But "making only one 

error" (no matter in R or in Rf), we shall compute Ψ less 

accurately. In this case κf will correspond to maximum value 

(m → ∞) of the criteria (19) and Eq. (15) will give strong 
oscillations near focus, that must not occur in this case. This 
situation illustrates the statement from the end of Section 2.  

 
6. CONCLUSION  

 
This paper was aimed at only emphasizing qualitative 

difference between the exact and PA solutions as well as at 
pointing out the key items of the PA theory that can yield 
(in certain situations) to incorrect results. Just for this 
reason the quantitative aspects of concrete problems 
considered above remain to be open. The questions 
associated, for example, with the distribution of the field 
amplitude and phase over the beam cross section near focus  

have not been discussed at all. It was assumed that in any 
case the use of the PA must be preceded by an analysis of 
the PA applicability. Therefore, the PA can hardly be 
considered versatile.  

In some controversial situations it is expedient to use 
either the exact solution (15) or the succeeding the PA 
approximation (17) in order to avoid, for certain, the errors 
in solving the problems of this kind. The method presented 
in Ref. 11 (field near a three–dimensional focus) used 
together with relations (23) seems to be mathematically 
faultless.  

Authors are very grateful to V.V. Kolosov for fruitful 
discusions.  
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