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Based on the technique of effective beam parameters are found the conditions of 
existence of the exact aberration solutions for the effective width, radius of phase 
front curvature, and limiting divergence. The effect of similarity of processes under 
the strong nonlinear distortions for different classes of a collimated beam self–action 
and mechanisms of nonlinear interaction are revealed. Regimes for formation of the 
limiting divergence in the primarily homogeneous and inhomogeneous nonlinear 
refractive media are studied. Relationships between the parameters of inhomogeneous 
path and the initial parameters of laser beams are determined for the case of weak 
nonlinear distortions.  

 
Divergence is one of the main characteristics of laser 

sources.1 It can be transformed considerably due to the 
self–action effects at the radiation propagation through 
nonlinear media.4,5 Almost all results of the previous studies 
concerning this problem were obtained based on the 
aberrationless approximation.2,3 However, the beam 
aberration distortions play a principle role in nonlinear 
interactions and their account can be performed only using 
more rigourous consideration of the problem. To do this, a 
technique based on the equations for an effective beam 
parameters is developed. Therefore, obtaining the 
quantitative relationships connecting the angular 
characteristics of laser radiation in a nonlinear medium with 
beam parameters and characteristics of regular medium 
inhomogeneities along the path as well as studying the 
regimes of formation a radiation directional pattern can be 
of certain interest. This paper deals with the nonlinear 
refractive effects in the regular homogeneous and 
inhomogeneous media with linear absorption.  

1. Beam divergence can be introduced as an effective 
width of the radiation angular spectra (directional diagram)  
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where G(κ, z, t) = |E
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|2 is the laser radiation angular 

spectrum; |E
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 E(R, z, t) exp (iκR) d2R is the 

Fourier transform of the complex field amplitude E; z and 
R = (x, y) are the longitudinal and transverse coordinates; t 
is time; and k is the wavenumber in the medium. If 
E = Aexp(iϕ), where A and ϕ are the real amplitude and 
phase of the wave, then Eq. (1) results in 
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In Eq. (2) R2
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 R2I(R, z, t) d2R is the squared 

effective beam radius; I and P are the radiation intensity 
and power, respectively; the coherence scale  
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characterizes the beam diffraction peculiarities in the 
nonlinear medium, and the scale  
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has a sense of the effective radius of the beam phase front 
curvature.  

Divergence of a beam in a nonlinearly refractive medium 
is related to the other effective beam parameters through the 
system of equations,4 which can be represented in the form  
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dP
dz  = –α(z) P , (5d) 

 

where ε
∼
 = ε

∼
(I) is the dielectric constant perturbation and α 

is the absorption coefficient of the medium. The scale 
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as well as Fe determines the weighted average radius of the 

beam phase front curvature. The difference between the 
scales Fe and |Fe1| indicates the presence of aberrations in 

the wavefront. Coincidence of the scales is possible when 
the phase is a square–law characteristic of R near the beam 
centre of gravity that corresponds to the so–called 
aberrationless approximation. In the most general case, 
according to definitions (4) and (6), one can show that 
Fe ≤ |Fe1|. The sign of the scale Fe1 indicates either focusing 

(Fe1 < 0) or defocusing (Fe1 > 0) of a beam.  

If the beam is not axially symmetric, its centre of 
gravity can lie off the beam axis. The radius–vector of 
the beam centre of gravity displacement  
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As follows from Eq. (2) the limiting beam divergence, 

i.e., θ
e
 in the long range zone is  
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In accordance with Eq. (5c) the nonlinear component  
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(0)|1/2 of the limiting divergence of the beam is  
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In the general case this characteristic can be sought after 
only from numerical solution of the problem on the beam 
propagation through a nonlinear medium.  

2. A salient feature of Eq. (5) is that in Eqs. (5b) and 
(5c) there are two additional unknown functions which are 
the integral characteristics of the radiation and medium. 
This peculiarity is entirely associated with the aberration 
character of the beam self–action and disappears in the 
aberrationless approach to solution of the problem.3 
However, there exists a class of practical problems for 
which the above difficulties can be overcome in the 
aberration case. Some of these problems will be considered 
below.  

Let us define the conditions under which Eq. (5) can be 
solved. To do this, let us pass from the system of three 
differential equations to an equation of the third order for R2

e
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It is obvious that the first integral in Eq. (9) can be sought 
after in terms of quadrature if the right side of this equation 
(function Φ(z)) is known. The function Φ(z) can be 
determined for a number of cases without solving of the wave 
equation.  

It appears that for a nonlinear medium of the Kerr 

type, where ε
∼
 = ε

2 
I, the self–action always results in 

Φ(z) = 0. It is equivalent to the existence of the invariant  
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From Eq. (10) it follows that  
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The solution for the beam divergence in a Kerr–type 
medium can be found for its limiting value alone 
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Having determined, according to Ref. 4, the length of the 
refractive nonlinearity  
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we can represent relation (13) in the form θ2

e
(∞) = θ2

e
(0) ≤ θ2

n
, 

where  
 
θn = Re(0)/Ln . (15) 

 
In the case of focusing media (ε

2
 > 0) Eq. 15 is valid 

at θe(0) ≤ θn. One can see from Eq. (13) that the law of 

radiation propagation through a Kerr–type nonlinear 
medium agrees with the analogous law for a linear medium 
but with different diffraction–limited divergence. It should 
be noted that solution (11) was first obtained in Ref. 9 by 
different method. The solutions for R2

e and Fe1 similar to 

Eq. (11) and (12) can be obtained for the case of arbitrary 
nonlinearity but only for short propagation distances 
z n Ln when the relation Φ(z) ≅ 0 is valid. 
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3. The problem concerning the Kerr nonlinearity is useful 
for the analysis of behavior of self–action of a beam having an 
arbitrary intensity profile. Similarity in the behavior of the 
relative effective radius Re(z)/Re(0) of beams having different 

profiles takes place in the Kerr defocusing medium under 
conditions of strong nonlinear distortions (the parameter of 
nonlinearity P2 = Ld

2/Ln
2 . 1, where Ld is the beam 

diffractional length). 
The similarity means that for a beam with a plane phase 

front the ratio Re(z)/Re(0) depends only on the dimensionless 

parameter of nonlinearity distortions z/Ln and the form of 

this dependence is the same for all types of beams:  
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This similarity property is characteristic of other types of 

nonlinear media as well. It takes place under conditions of 
strong nonlinearity (P2 . 1) at short (z < Ln) and long 

(z . Ln) distances. It happens so that in the both first and 

second cases the solution for the effective parameters has a 
form as in the case with the Kerr–type media. Moreover, in 
the second case the limiting beam divergence is being formed 
in the medium at distances less than the propagation length. 

As was noted above, in the majority of cases the 
limiting divergence can be calculated numerically. 
Therefore, let us analyze the results of calculations using 
the data from the papers in which self–action of beams of 
different intensity profiles under conditions of stable wind 
nonlinearity was studied.10,11 

The calculations were carried out for the beam having 
the intensity upon entrance into the medium given by  
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where m = 2, 4, 6, ... is the parameter determining the 
beam shape; I0(m) is the maximum intensity which is being 

chosen depending on the beam shape, so that the initial 
power of beams is one and the same, R

0
 is the initial radius 

of a Gaussian beam at the level e–1; Γ is the gamma–
function; cp and ρ are the isobar heat capacity and density 

of the medium, respectively; υ is the transverse component 

of the wind velocity; and, (∂ε
∼
/∂T)p is the isobar derivative 

of the dielectric constant with respect to temperature. 
Figure 1 shows the views of the function 
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z  depending on the 

distortion parameter (z/Ln)
2 values. The circles correspond 

to the beams with the different intensity profiles. Since the 
propagation channel in the problem concerning the wind 
nonlinearity is not axially symmetric, it is worth saying 
about the beam divergence near the direction of propagation 
of the beam gravity centre θc = dRc/dz, i.e., about the 

value θ
~
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e – θ2
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1/2. The relative radius (R – R)1/2 is 

determined only by the relative limiting divergence at long 
distances (z > L

n
) in the case of a strong nonlinearity4 
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FIG 1. Formation of the relative limiting divergence of 
the beam with different intensity profiles (17) in the 
nonlinear medium with the stationary wind flow for m = 2 
(1, 4), 4 (2, 5), 6 (3); (1–3) according to the data from 
Ref. 10, (4,5) according to the data from Ref. 11. 

 
Since the dependence η(z/Ln) for z>Ln has the same 

form for all types of beams this is indicative of similarity in 
the character of their self–action. At the same time one can 
see that the value η calculated numerically is sufficiently 
close to Re(0)/Ln for all types of the beams. 

The above facts show that the qualitative analysis of 
the problem is possible even if the exact solution for the 
effective beam parameters cannot be found. Such an analysis 
allows one to calculate the aberration scales of the self–
action problem and to generalize the results of numerical 
experiments. Note that it cannot be done based on the 
analysis of the equation of quasioptics only and using the 
definitions of the effective beam parameters. 

4. The above–considered case of forming of the 
limiting beam divergence in a medium with strong 
distortions belongs to a practically important class of the 
self–action problems, which are associated with the 
radiation propagation through a nonlinearly refractive layer. 
For this class the exact solutions of Eqs. (5) also exist but 
beyond the limits of the nonlinear layer (Φ(z) = 0 at 
z > z*). The point z* we shall call the boundary of the 
nonlinear layer. In accordance with Eq. (9) the value z* 
determines the range at which the limiting nonlinear beam 
divergence θn(z*) = θn∞

 = const is formed. A nonlinear 

refractive layer can be formed due to inhomogeneity of the 
propagation channel caused by variations in the 
thermodynamic parameters and concentrations of gases 
along the path as well as by the self–action leading to 
decrease of the nonlinearity inside the medium because of 
the beam defocusing. The vertical and slant paths in the 
atmosphere5-8 and the paths in laboratory experiments  
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where the radiation is received beyond the nonlinear 
medium are examples of such inhomogeneous paths.  

The solution for the effective beamwidth beyond the 
nonlinear layer can be written as  
 

R2
e(z) = R*2
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where δ* = 
1

F e
*2 – 

1

Fe1
*2 ≥ 0 is the characteristic of aberrations 

and the values on the nonlinear layer boundary are marked 
by asterisk.  

From Eq. (19) it follows that the structure of 
solutions for Re

2 in the aberration (δ > 0) and aberrationless 

( δ = 0) cases are always different. Therefore, the 
conclusions one can arrive at based on the aberrationless 
approach to analysis of the problem on transformations of 
the effective beam parameters are not always versatile. 

In the region of z . z*, |Fe1
* | the effective beam radius 

is determined only by the limiting beam divergence. Let us 
now analyze the situation when the radiation propagating 
through a nonlinear layer undergoes weak amplitude 
distortions. It takes place when Ln . z*. In a practical case 

of a wide beam self–action (z* n Ld) the phase gradient in 

Eq. (8) can be written in the geometrical optics 
approximation: 
 

∇
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and it is quite sufficient to calculate the parameters of a 
nonlinear lens appearing in the medium under the regime of 
weak distortions (z* < Ln) using a fixed field approximation 

when I(z < z*) = I(0). It should be noted that the 
perturbation of the medium dielectric constant can be 
represented as  
 

ε∼(R, z) = ε∼m(z) ε
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for the majority of the mechanisms of optical nonlinearity.  

Here ε
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a path and by the characteristic parameters of a beam, while  

ε
∼

(R) is determined by the type of radiation source and by the 
beam intensity profile. Taking into account these remarks one 
obtains for the effective radius of the phase front at the 
boundary of a nonlinear layer the following relation 
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Relation (21) can be reduced to the form  
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where  
 

L
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∼
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is the scale characterising the longitudinal inhomogeneity of 
the propagation channel. 

By analogy, for the effective radius of curvature (4) we 
have  
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where the scale  
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has the meaning of a refraction nonlinearity length like Ln 

but it differs from Ln because of the aberrations of the 

wavefront. 
The nonlinear component of the laser beam limiting 

divergence (8) on an inhomogeneous path in the case of 
weak distortions has the form  
 

θn∞
 = θn* = 

Re(0) Leff

L
~

n
2

 . (26) 

 
Under conditions of strong nonlinear distortions the 

transformation of the effective beam parameters will occur 
in the same way as for beams propagating through a 
homogeneous medium, when θn∞

 ≅ Re(0)/Ln. 
 

 
 

FIG. 2. Nonlinear component of limiting beam divergence 
as a function of nonlinearity length at self–action of a 
long laser pulse propagating along a vertical path in the 
atmosphere; Curve 1 (solid) presents the data calculated 
by radiation transfer equation5, Curve 2 is the asymptotic 
for the case of strong nonlinear distortions (15), and 
Curve 3 is the asymptotic for the case of weak nonlinear 
distortions (26). Close triangles show the data calculated 
by approximation formula (27). 
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Thus two limiting regimes of the effective beam 
parameters transformation are possible in an inhomogeneous 
nonlinearly refractive medium. These are the regimes of weak 
and strong nonlinear distortions. The limiting divergence of a 
beam in the regime of weak nonlinear distortions makes 
approximately an L

eff
/Ln fraction of the same value for the 

case of strong distortions. 
The above–noted peculiarities of the limiting nonlinear 

divergence of a beam are illustrated by an example of the 
problem dealing with thermal blooming of a Gaussian beam 
propagating along a vertical path in the atmosphere. The 
asymptotic curves (15) and (26) for the nonlinear component 
of the limiting divergence are shown in Fig. (2). The results of 
numerical calculations for the corresponding problem5 are also 
presented in this figure. The calculations have been done for a 
long pulse with λ = 10.6 μm and the diffraction length 
Ld = 592 km. The distribution of thermodynamical parameters 

of the medium along the path corresponds to the summer 
mid–latitude model of the atmosphere. In this case 
Leff = 3.24 km. Since in Ref. 5 as well as in other papers well 

known to authors no solutions that exactly correspond to the 
regimes of weak (Ln < Leff) and strong (Ln > Leff) nonlinear 

distortions have been obtained we made an extrapolation of 
the calculational data to these regimes. It was revealed that 
the function θn∞

(Ln) is close to the dependence Re(0)/Ln in 

the case of strong distortions though the extrapolated values of 
θn∞

 are lower (for example when Ln = 2 km and 

θn∞
 = 0.85 R(0)/Ln). In the range (Ln > Leff) the 

solution has a tendency to approach to asymptotics for 
weak nonlinear distortions (26). In the range of moderate 
distortions (Ln ≅ 1–3 Leff) the calculated dependence 

satisfies the approximation formula 
 

θn∞
 = 

Re(0)

Ln
 
L

1

L
n
 where L

1
–1 = Ln

–1 + L
eff
–1 .   (27) 

 
The laser beam self–action processes occurring on an 
inhomogeneous path under the action of other nonlinear 
interaction mechanisms can be described quantitatively in a 
similar way. 

In conclusion we should like to briefly summarize the 
main results obtained in this paper. The conditions under  
 

which the exact solutions for the effective width, 
effective radius of the phase front curvature and limiting 
divergence of a laser beam have been determined and the 
form of these solutions derived. It was revealed that in 
the case of an intense laser radiation propagating through 
an inhomogeneously refractive medium a nonlinear layer 
is being formed where the limiting directional pattern of 
the beam is formed. In the regime of strong distortions 
for initially inhomogeneous path the limiting divergence 
is equal to its value for a homogeneous path. But it 
depends on the scale of the path inhomogeneity in the 
weak distortions regime. The formation of a nonlinear 
layer causes the similarity effect in the behavior of the 
relative effective radius under the self–action of 
collimated beams in the regime of strong nonlinear 
distortions. 
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