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The conditions under which the Fourier transform can be used for numerical dif-
ferentiation of functions that are measured with some error are examined. Methods are 
given for taking into account boundary conditions on the differentiable function and its 
derivatives. The effect of the uncertainty of the boundary conditions on the quality of the 
differentiation is studied in a numerical experiment. 

 
 

Introduction. The problem of finding the nth 
order derivative u(t) = f(n)(t) of a function f(t), 
which is measured with some error in the interval [t0, 
T], reduces to solving a Volterra integral equation of 
the first kind:1 

 

 (1) 
 
where 
 

 (2) 
 

 
 

 (3) 
 

The regularized algorithms for numerical dif-
ferentiation are usually constructed for a system of 
linear algebraic equations, which is the fi-
nite-difference analog of Eq. (1) (derivatives of order 
(n – 1), inclusively, at the point t are set equal to 
zero, (t) = f(t) (Refs. 1 and 2)). The most difficult 
operation is inversion of an NN matrix, where 
N = (T – t0)/t + 1, and t is the spacing of the 
values of t at which the functions (t) and u(t) are 
determined. At the same time, for equations of the 
convolution type the volume of calculations can be 
significantly reduced by transferring into the fre-
quency domain.2–4 This is especially important for 
problems of large dimension, in particular, when 
differentiating multidimensional data.5 In this paper 
we study the conditions under which the Fourier 
transform (FT) is applicable in the problem of nu-
merical differentiation, we present methods for taking 
into account the boundary conditions on the function 

being differentiated and its derivatives, and in a 
numerical experiment we perform a comparative 
analysis of the quality of differentiation performed with 
the help of the FFT algorithm and by solving a system of 
linear equations approximating the equation (1). 

The conditions under which the Fourier trans-
form is applicable in the problem of numerical dif-
ferentiation. In order to use the Fourier transform to 
solve Eq. (1), we extended the functions h, u, and  in 
the standard fashion2 
 

 (4) 
 

 (5) 
 

This makes it possible to extend the limits of inte-
gration in Eq. (1) to infinity. Equation (1) then 
assumes the following form in the frequency domain: 
 

 (6) 
 

where the tilda denotes a Fourier transform,  is the 
angular frequency, and the Tikhonov-regularized 
solution of the starting problem is determined with the 
help of the inverse Fourier transform from 
 

 (7) 
 

where M()  0 is a prescribed even nonnegative 
function, and the numerical parameter  > 0 
(Ref. 1). 

One condition for the Fourier transform to be 
applicable to Eq. (1) under the additional conditions 
(2)–(5) and hence in order to be able to use Eqs. (6) 
and (7) is that the functions h, u, and  must be 
absolutely integrable. At the same time, the function 
h(t) defined according to Eqs. (2) and (5) is not 
absolutely integrable. This difficulty can be overcome 
by using a method based on the introduction of a 
"convergence factor."6 In this method h(t) is premul-
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tiplied by exp(–ct), where c > 0, and the limit c – 0 is 
taken in the final results. Calculating the Fourier 
transform of the function (2) and premultiplying by 
exp(–ct) we obtain, taking into account Eq. (5), 
 

 (8) 
 

where j2 = –1. As shown in Ref. 6, for n = 1 the 
possibility of using Eq. (8) in the limit c – 0 for 
calculating a convolution of the form (1) using Eq. (6) 

is guaranteed in the case (1)(0) 0.f   It is easy to show 

that for n > 1 the necessary condition for the exis-

tence of the limit when using ( )ch   instead of ( )h   

in Eq. (6) and letting c – 0 is  
 

 (9) 
 

This condition, together with the requirement that the 
functions f(1)(t), , f(n)(t) be absolutely integrable 
(necessary in order for the Fourier transform to be 
applicable to them), imposes restrictions on the 
function f(t) that is being differentiated. These re-
strictions are that this function and all its derivatives 
up to order (n – 1) inclusively must vanish in the 

limit .t    The transfer function ( )h   in Eqs. (8) 
and (7) will then have the form 
 

 (10) 
 

For  = 0, according to Eqs. (9), we set in Eq. (7) 
ˆ(0) 0.u   

We note that the restrictions on the function f(t) 
were formulated for infinite limits of integration 
t0 = – and T = . In real situations the limits of 
integration are finite, i.e., the condition for absolute 
integrability is satisfied. In addition, when the FTT 
algorithm is used to obtain a linear and not a cyclical 
convolution7 the number of readings of the function 
f(t) increases as a result of the addition of the zero 
values for t < t0, so that the requirement that the 
function extended in this manner and its derivatives up 
to order (n – 1) vanish at the ends of the interval is 
formally satisfied, even if it is not satisfied for the 
starting function f(t) (defined on the interval [t0, T]). 
Nonetheless, the possible jumps at the points t0 and T 
of the extended function can substantially distort the 
results of differentiation (see the numerical example 2 
given below). For this reason, we shall study a nu-
merical example of the differentiation of such a function 
under the condition that the requirement indicated 
above is satisfied at the ends of the interval [t0, T]. 

Numerical example 1. For the model function 
f(t) vie chose the Gaussian curve shown in Fig. 1a. 
The discrete representation of the function contained 
32 values in the interval [t0, T] and was extended on 
both sides by N/2 zero values. The parameters of the 
Gaussian curve were chosen so that at the ends of the 

interval [t0, T] the values of the function and its 
derivatives were close to zero. Additive noise (t1), 
where 1 are random numbers distributed uniformly in 
the interval [–1, 1], was superposed on f(t1). Two 
noise levels were used:  = 0.01 and  = 0.1. Thus the 
perturbed function f(t) = f(t) + (t) was differen-
tiated by two methods: using the FTT algorithm7 (to 
calculate the spectral characteristics appearing in 
Eq. (7) and the inverse Fourier transform of Eq. (7)) 
and also by solving a system of N = 32 linear equa-
tions, approximating Eq. (1), by the method of 
A.N. Tikhonov.1 In both cases a zero-order stabilizer 
was used (M() = 1 in Eq. (7)), and the regulari-
zation parameter was determined based on the dis-
crepancy. The results of the calculation of the first 
three derivatives are presented in Fig. 1. The calcu-
lations show that the quality of the differentiation is 
virtually identical for both algorithms. However the 
differentiation performed with the help of the FTT is 
much faster, the gain in speed in this case (N = 32) 
being several factors of 10 (the calculations were 
performed on a BESM-6 computer). The gain in speed 
increases rapidly as N increases.3 
 

 
 
FIG. 1. Numerical differentiation of the model 
function f(t) with the help of the Fourier transform: 
1) exact value; 2, 3) the values of the first (a), 
second (b), and third (c) derivatives calculated 
with 1% and 10% noise. 
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Taking into account the boundary conditions 
(differentiation of arbitrary functions). Let f(t) be 
an arbitrary differentiable function, not necessarily 
equal to zero (like its derivatives up to order (n – 1)) 
at the boundaries of the interval (t0, T]. We shall 
construct the function fp(t) = f(t) – p(t), satisfying 
the necessary boundary conditions, 
 

 
 

 (11) 
 
In order fp(t) satisfies the 2n equations (11) we shall 
seek p(t) in the form of a polynomial of degree 
(2n – 1): 
 

 (12) 
 
with 2n coefficients ak, determined from the equations 
following from Eq. (11): 
 

 
 

 (13) 
 

The derivative f(n)(t) sought is found (after nu-
merical differentiation of the function fp(t)) from the 
formula: 
 

 (14) 
 

The boundary values of the derivative f(1)(t0) and 
f(n)(T) sought (if they exist) can be taken into account 
similarly; in so doing, the polynomial (12) will be of 
degree (2n + 1). If information about the boundary 
values of the derivatives of one or another order is not 
available, it is natural to set them equal to zero (see 
Refs. 1 and 2). The effect of such assumptions will be 
studied below in a numerical experiment. 

Numerical example 2. For the model function we 
chose the parabola f(t) = at2 + bt + c, shown in 
Fig. 2a, on which noise was superposed (analogously 
to the example 1,  = 0.01fmax), and the first and 
second derivatives of this function were calculated 
using the Fourier transform. The regularization pa-
rameter  was determined based on the discrepancy. In 
calculating the first derivative the variants in which 
the boundary values of the derivative sought are 
unknown (in this case they were set equal to 0 — 
Fig. 2b) and when f(1)(t0) and f(1)(T) are known 
(Fig. 2c) were studied. The coefficients in the cubic 
polynomial p(t) had the following form: 
 

 
 

 
 

 
 

In calculating the second derivative the coefficients of 

the polynomial p(t) of degree5 have the following form: 
 

 
 

 
 

 
 

 
 

 
 

 
 

The following variants of the boundary conditions 
were studied: 

a) f(1)(t0) = f(1)(T) = 0, and f(2)(T) are known 
(Fig. 3a). 

b) f(2)(t0) = f(2)(T) = 0, f(1)(t0) and are 
known(Fig. 3b); and, 

c) the boundary values f(1) and f(2) are known 
(Fig. 3c). 
 

 
 
FIG. 2. Effect of the boundary conditions on the 
calculation of the first derivative: a) differentiable 
function, 1) exact value of its derivative, 2) results 
of numerical differentiation with unknown (b) and 
known (c) boundary conditions (the noise is equal 
to 1% of the maximum, value of f(t)). 
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FIG. 3. Effect of the boundary conditions on the 
calculation of the second derivative (the model 
function f(t) is the same as in Fig. 2). 1) Exact 
value of the derivative, 2) derivative calculated 
with 1% noise for variants a, b, and c of the 
boundary conditions. 

 

In the case when there is no information about the 
boundary values of f(1) and f(2) they are set equal to 
zero. The results obtained were found to be close to the 
variant a) and are not presented here. 

Analysis of the results shows that, first, the so-
lutions obtained with known boundary conditions 
(Figs. 2c and 3c) are in good agreement with the exact 
values of the derivatives (the error in the reconstruc-
tions falls within the error range in prescribing the 
differentiable function). Second, the lack of infor-
mation about the boundary values of the derivative 
sought degrades the results near the boundaries, but on 
the whole the obtained solution is in complete 
agreement with the true solution (Figs. 2b and 3b).  

Third, uncertainty in the prescription of f(1)(t0) and 
f(1)(T) when calculating the second derivative results 
in substantial degradation of the results, even when 
information about f(2)(t0) and f(2)(T) is used (Fig. 3a). 
We note that the uncertainty in prescribing the 
boundary conditions has an analogous effect on the 
accuracy of the solution of the system of linear alge-
braic equations using Tikhonov’s method.1 Thus nu-
merical differentiation using the Fourier transform, as 
follows from the numerical examples 1 and 2, gives 
approximately the same accuracy in solving the 
problem as the accuracy obtained with the use of 
matrix methods. At the same time, the proposed 
method makes the calculations many times faster, 
especially for problems with large dimension, such as 
numerical differentiation of lidar signals.8 
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