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A model of distribution over angles of deviation from the horizontal position of crystal cloud 
particle maximal diameters in the process of their gravitational sedimentation is proposed. A single-
parametric distribution over orientation angles is obtained. The distribution parameter is shown to 
depend on the particle size and the rate of energy dissipation in the turbulence cells. 

 
Crystal cloud particles are anisotropic. The ratio 

of their maximal diameters to minimal ones varies 
from one and a half to some units. At gravitational 
sedimentation, aerodynamic forces orient particles by 
their  greater diameters crosswise to the direction of 
the counter air flow.1,2 At the same time, some forces 
destructive for the orientation process affect the 

particles: stochastic fluctuations of the angular 

momentum due to Brownian rotation, as well as 
interactions with turbulent micropulsations of the air 
flow velocity. Estimates show that in the 5–10 μm size 
range energies of these two disorientation mechanisms 

are comparable in the order of magnitude. For smaller 
particles, the thermal motion is a determining factor. 
For particles of 100 μm size, the energy of interaction 
with dissipation turbulent cells is three orders of 
magnitude greater than kT. 

Turbulent cells of sizes comparable with particle 
maximal diameters, effectively destroy the orientation. 
Large-scale vortices do not affect essentially the 

particle orientation, but they are responsible for 
macroscopic transfer, in particular, they prevent from 
particle  size separation over heights in the process of 
the gravitational sedimentation.3,4 

The sedimentation orientation is the main 

orientation mechanism for particles. A possibility of 
particle orientation by their greater diameters 

predominantly in some azimuthal direction (presumably, 
crosswise to the wind velocity), was proved by means 
of solar column observations5

 and lidar investigations of 
the backscattering phase matrices.6 We plan to 

substantiate this hypothesis in the next paper. 
Experiments have shown that the azimuth orientation 
seldom manifests itself strongly, therefore, it can be 
ignored safely for accuracy in calculations of the 
scattered radiation angular distribution. Only the 

angular distribution of deviations of the particle 
maximal diameters from horizontal position will be 
discussed below. A uniform angular distribution of 
the azimuth orientation is supposed. 

The material of this paper can be used in designing 
optical models of crystalline clouds. In particular, in 

the nearest future, we plan to estimate the correlation 
between the element m44 of the normalized 

backscattering phase matrix (BSPM) determined at a 
crystal cloud sensing to zenith or nadir, and 
parameters of distribution over angles θ of deviation 
of plate bases or column axes from the horizontal 
position. It was shown6,7 that m44 does not depend on 
the azimuth orientation. Its variations for some 

particular ensemble of particles depend only on 
variations of the particle distribution function over θ. 
Since we have in our disposal the instrument (the lidar 
“Stratosphere”) capable of measuring the overall 
BSPM, we can compare then modeling results with 
experiment. 

Crystal clouds contain particles of various shapes 
and sizes. According to international classification, 
there are ten types of particles, and according to a 
more detailed classification, there are 80 modifications 
of crystals.8 Nevertheless, data are available that 
crystals of columnar and plate-like shapes9

 are prevalent 
in Ci and Cs clouds at heights of 6.5–11 km. We 
will simulate these particles in the orientation model 
as oblate and elongated ellipsoids of rotation. 

The particle size spectrum in crystal clouds of  
the upper layer lies in the range from several microns  
to a millimeter. Hence, particle motion regimes are 

different. Air is a viscous medium for fine particles. 
Their sedimentation velocity can be estimated by the 
Stokes formula. The motion character of larger particles 
is turbulent. We estimate their motion velocity using 

the known empirical relationship between the 

sedimentation velocity u and the maximal diameter h 
 

 .u Ahβ=  (1) 

The values of the empirical constants A and β 
for crystals of different shapes, taken from Ref. 11, 
are presented in Ref. 12, where the velocity is 
determined in cm/s, and the maximum size in mm. 
To turn to the units of SI system, it is necessary to 
use the constant 

 3 –210 .A A∗ β=  (1′) 
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The comparison of the sedimentation velocities 
calculated by the Stokes formula and Eq. (1) shows 
that both formulas provide for approximately equal 
(from 0.5 to 4 cm/s) velocities for particles with sizes  
between 5 and 20 μm. As for larger particles, the Stokes 
formula gives overestimated values as compared to 
the experimental data. For simplification, we consider 
Eq. (1) true for all sizes. 

The boundary between the regimes of viscous 
and turbulent motion is near the Reynolds number 
Re ≅ 1. If the particle maximum-size distribution is 
known, one can determine how the motion of cloud 
particles is distributed between two aforementioned 
regimes. Let us take the two-parameter gamma-
distribution of the probability density as the initial 
distribution12: 

 
1

1
m m m

( ) exp – ,
( 1)

h h
f h

h h h

μμ+ ⎛ ⎞ ⎛ ⎞μ= μ⎜ ⎟ ⎜ ⎟Γ μ + ⎝ ⎠ ⎝ ⎠
 (2) 

where h is the maximal diameter of particles, μ = 4, 
hm = 4 ⋅ 10–4 m is the distribution mode. 

However, a comparison of distribution (2) with 
later measurements carried out with the improved 
instrumentation13,14 leads to the conclusion that this 
distribution underestimates values for small particles. 
Therefore, we finally accept the probability 

distribution 

 1 2( ) 0.8 ( ) 0.2 ( ),f h f h f h= +  (3) 

where f2(h) = αexp(–αh), α = 104. 
The distribution (3) is shown in Fig. 1, for which 

the following normalizing condition is fulfilled: 

 
0

( )d 1,f h h
∞

=∫  

satisfactorily describing the experimental spectrum 
presented in Ref. 14. 

 

 
 

Fig. 1. Distribution of the crystal cloud particles over 
maximal diameters accepted for estimations of the 
distribution over the Reynolds numbers. 

 
Using the definition Re = uh/ν, where ν is the 

air kinematic viscosity, and the empirical relationship (1), 
let us pass to distribution over the Reynolds numbers. 
To do this, we apply the rule for the distribution of 

random values related by the functional dependence.15 
The distribution over the Reynolds numbers is shown 
in Fig. 2. 

 

 
 

Fig. 2. Distribution over the Reynolds numbers 
corresponding to the size distribution shown in Fig. 1. 

 
The distribution satisfies the normalizing 

condition Ð(0, …, ∞) = 1, where P is the total 
probability. A fraction of particles satisfying the 
condition Re ≤ 1 is equal to 0.215. Particle sizes 
satisfying the same condition correspond to the range 
0 < hm < 200 μm. 

All the aforesaid means that sedimentation of 
about 80% of cloud particles goes in the regime of 
generation of turbulent vortices. But the Reynolds 
numbers do not exceed 10–20, that corresponds to 
the stationary regime, at which the partial derivative 
of the flow velocity with respect to time in the 
coordinate system related to the particle is zero, and 
the circulation along any contour around the particle 
is zero. In other words, the vortices are stationary and 
move together with the particle. All this is related to 
a stable regime of sedimentation, at which a particle 
occupies a symmetric position relative to the flow. 
When deviating from the equilibrium position, the 

vortex field symmetry is destroyed, and the flow 
circulation becomes nonzero. 

According to the law of conservation of the 
angular momentum, the particle is affected by the 
moment of force, the sign of which is opposite to the 
moment stipulated by the flow velocity circulation. 
It is essential that Re < 40 for the entire spectrum of 
particles, hence, the regime of vortex separation, at 
which particle oscillations are possible, does not 
occur. The vortices are located near the particle, and 
the velocity field of the counter airflow can be 
considered potential, on the average. In this case the 
module of the moment of forces affecting the ellipsoid 
of rotation is described by the formula1,10 

 2( ) sin2 /2,M u Vθ = λ ρ θ  (4) 

where θ is the angle between directions of the 
particle sedimentation velocity u and the small axis 
of the ellipsoid of rotation; ρ is the air density; V is 
the ellipsoid volume, λ is the form-factor depending 
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on the ratio between the minor b and major a semi-
axes of the ellipsoid: 

 

–1–1
2

3 2 1–
– 1– – arctan –1 ,

2
e

e e e
e

⎧ ⎫⎡ ⎤⎛ ⎞π⎪ ⎪⎢ ⎥⎜ ⎟λ = ⎨ ⎬⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭

 (5) 

where ( )2 2 2–e a b a=  is the eccentricity. 

The volumes of spheroid and elongated ellipsoid 
can be expressed through dimensions of big semi-axes 
and the eccentricity by the following formulas: 

 3 2
s

4
1– ,

3
V a e= π  3 2

e
4

(1– ).
3

V a e= π  (6) 

Substitute a = h/2 into Eq. (6), where h stand 
for maximal diameters of particles, and determine the 
sedimentation velocity from Eq. (1) taking into 
account Eq. (1′). 

Then we obtain for the orienting moment: 

 2 (6 –4) 3 2
s s

1
( ) 10 sin2

12
M A hβ + βθ = πΛ ρ ⋅ θ  (7) 

for plate-like particles, and 

 2 (6 –4) 3 2
e e

1
( ) 10 sin2

12
M A hβ + βθ = πΛ ρ ⋅ θ  (8) 

for columnar ones, 

where 
2

s 1– eΛ = λ  and 
2

e (1– )eΛ = λ  are the 

generalized form-factors. 
The energy needed for realization of the ensemble 

of N particles with the size distribution f(h) deviated 
from the equilibrium position through the angle θ, is  
 

 
0 0

( ) ( , ) ( )d d .U N M h f h h
θ ∞

θ = θ θ∫ ∫  (9) 

It depends only on the generalized coordinate θ and 
can be considered as the potential energy of the 
particle ensemble. A decrease of energy in the 
equilibrium state is compensated for at the cost of 
interaction of particles with turbulent micropulsation 
cells, the kinetic energy of which is proportional to 
the air mass in the cell multiplied by the mean square 

of the velocity pulsations 2
t .u  

Let us determine the scales of length and velocity 
in the dissipation interval16: 

 ( )
1/43

1/4
t,l u

⎛ ⎞ν= = εν⎜ ⎟ε⎝ ⎠
, (10) 

where ε is the energy dissipation rate. Take in estimation 
that T = 250 K and ν = 3 ⋅ 10–5 m2/s correspond to  
a height of 10 km. The dissipation rate strongly 

depends on the turbulent state of the atmosphere.  
In average, for tropopause ε = 4–5 ⋅ 10–4 m2/s3 (∼ 4– 
–5 cm2/s3), but in clouds the values can be tens and 

hundreds times higher.17
 Note that for the above ε and 

ν ut ≅ 3.5 ⋅ 10–2 m/s, and l ≅ 2.5 mm. 
The cell of l diameter has, on the average, the 

energy 

 3 2
t

1
.

6
w l u= π ρ  (11) 

Determine the cell energy as the function of the 
mean dissipation rate, using Eqs. (10) and (11) 

 11/4 –1/41
( ) .

6
w ε = πρν ε  (12) 

We take the efficiency of energy transfer from 
the turbulent cell to a particle equal to the ratio of 
their volumes 

 3 3 –3/4( , ) ( ) .p h hε = ν ε  (13) 

The kinetic energy received by the particle at 
collision with the cell is 

 ( , ) ( , ) ( ).W h p h wε = ε ε  (14) 

Now we find the distribution over the orientation 
angle from the condition of the balance between the 
potential energy of particles and the kinetic energy of 
the turbulent pulsations 

 d ( , ) d ( , ) 0.U h E hθ + ε =  (15) 

First suppose that the ensemble consists of n 
particles of the same size ⎯h. Then Eq. (15) can be 
rewritten as  

 ( , )d – ( , )d .nM h W h nθ θ = ε  (16) 

Integration of this equation results in  

 ( ) exp( cos2 ),n Cθ = χ θ  (17) 

where, taking into account Eqs. (7), (8), (12)–(14), 
 

 (6 –4) 2 2
s,e( , ) 10 /4 .h A hβ βχ ε = Λ νε  (18)  

The dependence of χ on large diameters of particles h 
at five values of the dissipation rate ε is shown in 
Fig. 3. The χ values for some particle sizes are shown 
in Table 1. 

The distribution shape for three χ values is shown 
in Fig. 4. At χ→0 the distribution is transformed to 
the uniform one with the probability density 1/π. The 

values of the square root of the variance σ are shown 

in Table 2, which give an estimate of the flatter 
magnitude at given values of χ. 

According to Eq. (18), χ can be considered as 
the function of the greater diameter h at the a priori 
set ε. Since h varies in a wide range, the distribution 
over the angle θ can not be represented by one 
function of the form (17) for the overall particle 
ensemble. To construct the model of distribution over 
orientation angles suitable for simulation of elements 
of the scattering phase matrix, we proceed as follows. 
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Table 1. Dependence of the distribution parameter χ on the maximum diameter of particles h at five 
values of the energy dissipation rate ε. Upper values are for plate-like particles, lower are for columns 

 h, μm ε, m2/s3 
5 10 20 30 50 100 200 300 400 500 750 

10–4 0.20
0.04 

0.71 
0.14 

1.61 
0.50 

2.97
1.06 

6.38
2.71 

18.0
19.9 

51.0
34.7 

93.7
73.2 

144 
124 

202 
187 

372 
395 

5 ⋅ 10–4 0.09 
0.02 

0.25 
0.06 

0.72 
0.22 

1.33 
0.47 

2.85 
2.21 

8.07 
4.34 

22.8 
15.5 

41.9 
32.7 

64.5 
55.6 

90.2 
83.8 

166 
176 

5 ⋅ 10–3 0.03 
0.01 

0.08 
0.02 

0.23 
0.07 

0.42 
0.15 

0.90 
0.38 

2.55 
1.37 

7.22 
4.91 

13.3 
10.4 

20.4 
17.6 

28.5 
26.5 

52.4 
55.9 

10–2  
0.01 
– 

0.03 
0.01 

0.07 
0.02 

0.13 
0.05 

0.28 
0.12 

0.81 
0.43 

2.28 
1.55 

4.19 
3.27 

6.45 
5.56 

9.02 
8.38 

16.6 
17.7 

5 ⋅ 10–1 – 
– 

0.01 
– 

0.02 
– 

0.04 
0.01 

0.09 
0.04 

0.25 
0.14 

0.72 
0.49 

1.33 
1.04 

2.04 
1.77 

2.85 
2.65 

5.24 
5.59 

 
Table 2.  Rms deviations from the horizontal position 

χ 1 3 5 10 30 50 100 200 300  500 

( )σ ° 36.3 18.9 13.7 9.3 5.3 4.1 2.9 2.0 1.6 1.3 

 

 
 

Fig. 3. Dependence of the distribution parameter χ(h, ε) 
over the orientation angles (17) on the diameter of plate-like 
particles h at the following values of energy dissipation rate 
ε, m2/s3: 10–4 (1); 5 ⋅ 10–4 (2); 10–3 (3); 10–2 (4); 5 ⋅ 10–1 (5). 
 

Select some sub-ensemble of particles in the size 
range [hi–1, hi], within which we can make use of the 
mean size .i ih h=  Statistical weight of such a sub-
ensemble and the number density of particles are, 
respectively,  

 
–1

( )d ,
i

i

h

i

h

g f h h= ∫  ,i in g N=  
–1

( )d ,
i

i

h

i

h

h hf h h= ∫  (19) 

where N is the total number density of particles. The 
normalizing constant is determined from the condition 
 

 
/2

– /2

( )d ;i in g N
π

π

θ θ =∫  

 

–1/2

– /2

exp( ( , )cos2 ) di i i iC g N h
π

π

⎧ ⎫⎪ ⎪⎡ ⎤= χ ε θ θ =⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭
∫  

 0( ),i ig N I= π χ  (20) 

where I0(χ) is the modified Bessel function of zero 
order. 

 
 

Fig. 4. Distribution function over the deviation angle θ  
of maximal particle diameters from horizontal position at 
the following values of the distribution parameter χ(h, ε):  
χ = 1 (1); 10 (2); 100 (3). 

 

The model of distribution over the angle θ for 
the overall ensemble is represented by a set of functions 
of the form 

 ( ) exp( ( , )cos2 ) .i i in C h⎡ ⎤θ = χ ε θ⎣ ⎦  (21) 

Note that any size-distribution function, for which 
the condition Re = A*hβν ≤ 40 is fulfilled, can be taken 
as the function f(h) in definitions (19). 

It follows from the aforesaid that the interaction 
of the falling crystal particles with the collective 

motion of molecules in dissipation cells is the 

determining factor in distribution over orientation 

n[θ, χ(h)], θ, deg–1
 ⋅m–3 

h, μm 
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angles. If to admit that disorientation occurs only 
due to the thermal motion of molecules, our estimates 
show the following. The particles smaller than 5 μm are 

completely disoriented. Orientation of larger particles 
quickly increases so that the rms deviation for 10 μm 
particles is about 7°, and 20 μm particles are, in 

practice, strictly oriented. However, this contradicts 
to the experimental data obtained at the Institute of 
Experimental Meteorology.18 

Observations with a TV-camera have shown that 
the horizontal orientation of ice columns of d = 36 μm 
and h = 54 μm is only one order of magnitude higher 
than the vertical orientation. This corresponds sooner 
to the lower value (2.71) in the fifth column of the 
first row in Table 1. 

In closing, we would like to remark upon 
conclusions inferred in Ref. 3 about the turbulence 
effect on particle orientation in a cumulus cloud. The 
qualitative analysis based on comparison of linear 
scales of the orientation distance (the product of the 
particle sedimentation velocity into the orientation 
time), linear scale of the dissipation cell (10), and  
the Taylor microscale has led the authors to some, in  
our opinion, vigorous conclusion about insignificant  
effect of turbulence on the particle orientation. The 
lower row of Table 1 is calculated for the turbulence 

parameters used by authors of the cited paper. They 
took a particle size of 500 μm. As is seen in Table 1, 
a noticeable orientation is still observed for particles 
of such a size, but it is far from that, which would 
occur in the absence of turbulence. 

The estimate3 of the probability of particle 
collision with a dissipation cell based on comparison 
of the cell volumes of the scale (10) and the Taylor 
cells seems to be incorrect. Obviously, they have 
ignored the fact that there is a continuous energy 
spectrum between two aforementioned scales, and the 
process of energy dissipation is most intensive in the 
range 0.1 < kl < 1, where k is the wave number,16 
that corresponds to the range 6l – 60l of the cell 
linear sizes. Taking into account of only this fact 
increases the estimate of probability by the technique 
developed by the authors, by two orders of magnitude. 
Actually, the probability of the event that a particle 
will be subjected to impact of some dissipation cell 
of one or another size, is quite high. 
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