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The efficiency of introduction of the controlled phase modulation for an 

image-forming wave is justified for solution of a phase problem. As applied to the 

adaptive optics, the method is proposed, which allows separation of the restoration 

problem for even and odd components of the distorted wave phase by an image. 

 

1. INTRODUCTION 

 

As known, atmospheric instability has a negative 
effect upon an object’s image. The methods of 
compensation for atmospheric instability can be divided 
into two types. 

The first type covers the methods which can be 
referred to as interferometric. They are based on the 
specific processing method. A series of short-exposition 
images of an object is processed. This allows obtaining 
of information about object’s spatial frequencies. The 
final stages of these methods is restoration of intensity 
distribution on an object by spectrum modulus and, 
conceivably, by some data on spectrum phase. 

Methods of the second type (they can be joined 
under the name œadaptiveB) assume that an optical 
system (OS) operates by the new principle.1 An optical 
system includes the adaptive element. This element in 
real time makes the controlled change of a phase of the 
image-forming wave. The diffraction image of an object 
can be obtained, if the controlled change is equal to the 
wave phase distortion introduced by the medium of 
wave propagation in the absolute value, but opposite in 
sign. The principles of adaptive optics can be used not 
only for compensation for atmospheric instability, but 
also for solution of the problems of large-size optical 
elements. The control over the adaptive element 
depends on the measurement method used for phase 
distortions: in one method, measurement of phase 
distortion and its compensation by the adaptive element 
are made at once (with regard for dynamics); in the 
second method, phase distortion measurement 
(conceivably, inaccurate) and compensation are 
stepwise. It is as if OS self-tunes to the diffraction 
image. This tuning can follow some criteria or 
condition, or both of them. 

The second method is most simple from the 
viewpoint of phase measurement. It attracts many 
researchers.2 That is why just the second method is 
considered in this paper. To implement it, the methods 
and algorithms are required to extract the information 
about phase from the object’s image distorted by this 
phase. 

Let us use G(ξ, η) = `(ξ, η) × exp(iΦ(ξ, η)) for 
the complex function (pupil function), which describes 
amplitude and phase wave distortions at the OS exit 
pupil Ω. The amplitude A = 0 outside Ω. Intensity in 
the image of a point object is3:  

h(x, y) = | g(x, y)| 2 = | F(G)|  2,  (1) 

where F is used for two-dimensional Fourier transform. 
Phase restoration by an image is reduced to the 

following so-called phase problem (PhP): 
determination of Φ from Eq. (1) from the known A on 
Ω and h on ω. In particular, the problem of image 
restoration by the interferometric method is, in essence, 
the problem given by Eq. (1) for the unknown function 
G = ` ≥ 0. Problems associated with the phase problem 
are rather numerous,4 and they are not restricted by 
astronomic observations. Difficulties in the phase 
problem solution are well known. It is necessary to 
obtain the reliable data on the phase (function G) by h 
with regard for measurement errors. 

Two algorithms for optimization of the numerical 
solution for PhP can be separated: the Gershberg-
Zakstone (GZ) algorithm and the gradient one.2 In 
both methods, a solution of the phase problem is the 
global extreme point of the defining functional, which 
characterizes the discrepancy between the measured and 
calculated values of intensity. 

The adaptive algorithm for PhP solution, which 
will be considered below in Section 2, was first 
proposed in Ref. 5 and then generalized in Ref. 6. 
Starting from the essence of an adaptive OS, it should 
solve the following equation: 

h(x, y; Φ) $ h(x, y; 0) = 0 ,   (x, y) ∈ ω ,  (2) 

where Φ is the difference between the unknown phase 
and the controlled phase introduced by the adaptive 
element; h(x, y, 0) is the known intensity 
corresponding to the diffraction image of a point 
object. To solve Eq. (2), we use the modified Newton 
method: 
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h(x, y; Φn) $ h(x, y; 0) = 

= δh(x, y; 0) = h′(x, y; 0)δΦn ,  (x, y) ∈ ω ,  (3) 

where δh is a variation of h at the point Φ = 0 due to 
δΦ. A variation δΦC is just this controlled phase, by 
which Φn should be changed with the help of the 
adaptive element. The algorithm (3) can be realized, if 
the derivative h′(x, y; 0) is the reversible operator. A 
narrower version of the algorithm (3) can be 
considered. Let us present the phase distortion as a 
truncated series by some system of basis functions: 

Φ = ∑
s = 1

n

 ζs Φs .  (4) 

Then PhP is reduced to determination of the 
coefficients (modes) ζs. The algorithm (3) can be 
realized if the derivatives äh/äζs are linearly 
independent on ω. Just the problem of mode restoration 
by the algorithm (3) was considered in Refs. 5 and 6. 

Sections 2 and 3 of this paper prove the efficiency 
of the use of the fixed controlled wave phase 
modulation for solution of the phase problem. In 
addition, it is shown in Section 3 that if the PhP 
defining functional is taken as a discrepancy of wave 
functions (rather than amplitudes) and the method of 
œdimensionality increaseB is applied, then the 
optimization methods for PhP solution become more 
numerous. 

 

2. RESTORATION OF THE EVEN AND ODD 

COMPONENTS OF THE WAVE FRONT 
 

Let us present the phase of the pupil function as 

Φ = Φ1 + Φ2, 

where Φ1($ξ, $η) = $Φ1(ξ, η) is the odd component of 
Φ, and Φ2($ξ, $η) = Φ2(ξ, η) is the even one. The 
components can be expressed in terms of Φ as follows: 

Φ1(ξ, η) = 
Φ(ξ, η) $ Φ($ξ, $η)

2  , 

Φ2(ξ, η) = 
Φ(ξ, η) + Φ($ξ, $η)

2  . 

As to the known amplitude A of the pupil 
function, let us assume that it is an even function on 
the exit pupil. Let us also assume that there is a 
possibility to introduce a fixed controlled action upon 
the pupil function. This action is reduced to 
multiplication of the pupil function by the phase factor 
Gθ = �$iαϕ(ξ, η), where the real function ϕ(ξ, η) defines 

the character of the phase action, and the real 
coefficient α defines the magnitude of this action. For 
example, measurement of the intensity h(x, y) in the 
plane with the coordinate α = z, parallel to the focal 
plane, rather than in the focal plane itself, is 

tantamount to introduction of the phase modulation 
defined by the function 

ϕ(ξ, η) = (ξ2 + η2)/2 = ρ2/2 .  

References 5 and 6, if considered from this 
viewpoint, apply the modulation of the type of 
defocusing, and it is shown that at z = 0 the modes of 
particular components do not affect δh. Consequently, 
they cannot be restored from solution of the problems 
given by Eqs. (3) and (4). 

Let us introduce the following shorthand symbols: 

C = F(A cos αϕ) ,   S = F(A sin αϕ) 

FC (Φ) = F(ΦA cos αϕ) , 

FS(Φ) = F(ΦA sin αϕ) . 

With regard for the designations, the function g(x, y) 
in the OS focal plane with the pupil function 
G(ξ, η) = `(ξ, η)exp(iΦ(ξ, η)) and at phase 
modulation can be written in the following form: 

g(Φ) = F(G0 A eit) = FC (eit) $ iFS(eit) . 

At Φ = 0, the function g(0) = q $ iS, and the variation 
δg(0) at the point Φ = 0 as a response to the variation 
δΦ is equal to 

δg(0) = FC (iδΦ) $ iFS(iδΦ) . 

Let us consider the expression for the variation δh 
depending on whether ϕ is even or odd. 

1. The function ϕ is even. The C and S are also 
even functions, while Fq(Φ) and FS(Φ) are real even 
or imaginary odd functions depending on whether Φ is 
even or odd. The intensity variation δh as a response to 
the wave front variation δΦ at the point Φ = 0 is 
defined by the following expression: 

δh = 2Re g*(0) δg(0) = 

= 2Re (C + iS) [FC (iδΦ) $ iFS(iδΦ)] = 

= 2C [FC (iδΦ1) + FS(δΦ2)] + 

+ 2S [$ FC (δΦ2) + FS(iδΦ1)] = 

= 2 
⎝
⎛

⎠
⎞C

$S

T

 
⎝
⎛

⎠
⎞FC (iδΦ1) + FS(δΦ2)

$ FS(δΦ2) + FC (iδΦ1)
 = 

= 2 
⎝
⎛

⎠
⎞C

$S

T

 
⎝
⎛

⎠
⎞FC FS

$ FS FC

 
⎝
⎛

⎠
⎞iδΦ1

δΦ2
 ,  (5) 

where the symbol T is used for transposition, 
⎝
⎛

⎠
⎞FC FS

$ FS FC

 

is the matrix of linear operators of transformation over 

the vector of functions 
⎝
⎛

⎠
⎞iδΦ1

δΦ2
 . At α = 0, the function 

S = 0, FS is zero operator, and  

δh = 2CFC (iδΦ1) .  
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This equality can be reversed with good accuracy: 

δΦ1 = (2i)$1 F$1[Cδh1/(γ + C2)] ,  

where γ ≅ 0 is the positive regulating parameter which 
excludes division by zero.  

Thus, at α = 0 the algorithm (3) allows restoration 
of only odd wave front components. In other words, 
without application of modulation, the algorithm (3) 
does not restore even components of wave front. 

At α ≠ 0   δh = δh1 + δh2, where 

δh1 = 2 
⎝
⎛

⎠
⎞C

$S

T

 
⎝
⎛

⎠
⎞FC

$ FS

 (iδΦ1); 

δh2 = 2 
⎝
⎛

⎠
⎞C

$S

T

 
⎝
⎛

⎠
⎞FS

FC

 (δΦ2) .  (6) 

The equality (3) breaks into two equalities for 
respectively odd and even components of the wave 
front: 

h1(Φ) $ h1(0) = δh1(0)  and  h2(Φ) $ h2(0) = δh2(0) .  
 (7) 

Realization of the algorithm (7) depends on the 
properties of the transformations δΦ1 → δh1 and 
δΦ2 → δh2. The condition δh1 = 0 is tantamount to 

stating that vectors 
⎝
⎛

⎠
⎞C

$S
 and 

⎝
⎛

⎠
⎞FC

$ FS

 (iδΦ1) are 

normal at any (x, y) ∈ ω. At the points where CS ≠ 0, 
this is tantamount to the equalities 

 

FC iδΦ1 = k1S    and    $ FSiδΦ1 = k1C ,  (8) 
 

where k1 is the odd function determined through δΦ1. 
If the set, on which qS ≠ 0, has zero measure, then it 
follows from Eq. (8) that the set of zeros of the 
transformation δΦ1 → δh1 is not very wide.  

Similar reasoning shows that the set of zeros of the 
transformation δΦ2 → δh2 is determined by the 
equalities 

FC  δΦ2 = k2q    and    $ FS δΦ2 = k2S ,  (9) 

where k2 is the even coefficient of proportionality. It is 
different for every function δΦ2, for which δh = 0. In 
particular, δΦ2 = k = const satisfies Eq. (9). But this 
case is of no interest, because it is sufficient when the 
even component of phase is known accurate to a 
constant term. And again we discover that the set of 
zeros for the second transformation given by Eq. (7) is 
not very wide. 

It follows here from that the algorithm (7) at 
α ≠ 0 can be realized for restoration of wave front 
modes, and the proper choice of α and the function ϕ 
can provide for linear independence of partial 
derivatives äh/äξs. It is also possible to choose α and ϕ 
for every mode in such a way that derivatives will be 

not only linearly independent, but also their Gram 
matrix will be well-posed. 

2. In spite of the function αϕ defining the phase 
modulation, let us consider the sum ψ + αϕ, where 
ψ = 0 at the polar angle in the pupil plane having the 
value within the range [0, π) and ψ = π with the polar 
angle in the range [π, 2π), while ϕ is the odd function. 
For example, a controlled total inclination of the wave 
front gives the odd function ϕ = βx + γy, it can be 
created by parallel transfer of the coordinate system in 
the plane of intensity recording h by the vector  
($β, $γ). 

At such modulation, the product Aei(ψ + αϕ) = 
= (Aeiψ) eiαϕ has the odd amplitude A1 = Aeiψ and the 
even phase ϕ. The functions C, S, FC , and FS have the 
following properties: S, FC (δΦ1) and FS(δΦ2) are even 
real functions, while C, FS(δΦ1) and FC (δΦ2) are odd 
imaginary functions. With regard for the above-said,  

δh = 2 Re (C* + iS) [FC (iδΦ) $ i FS(iδΦ)] = 

= 2 Re (iC* $ S) [FC (δΦ) $ i FS(δΦ)] = 

= 2 (iC* $ S) [FC (δΦ1) $ i FS(δΦ2)] ; 

A1 δΦ1
 cos αϕ $ A1 δΦ2 sin αϕ = F$1 ⎣

⎡
⎦
⎤(iC* $ S)δh/2

γ + (iC* $ S)2  . 

 (10) 

If measurements are done at two different 
modulations, such that the determinant  

⎪
⎪

⎪
⎪cos (α1ϕ1) sin (α1ϕ1)

cos (α2ϕ2) sin (α2ϕ2)
 = sin (α2ϕ2 $ α1ϕ1) ≠ 0, then 

these measurements allow unambiguous determination 
of δΦ1 and δΦ2 from Eq. (10). Consequently, the 
Newton method can be fully used in the problem of 
subsequent compensation of the wave front. 

As we found, restoration of even and odd modes 
by the algorithm (7) can be done separately. It may be 
used to decrease the problem dimensionality by 
choosing the basis from even and odd functions. Thus, 
the Zernike basis initially consists of even and odd 
functions. Piecewise linear functions form very 
convenient basis. Let the exit pupil be divided into 2n 
equal subapertures Ωs, and the apertures Ωs and Ωs+n, 
s = 1, ..., n, are centrally symmetric. Let the wave 
front is given by the linear law Φs = αs + βsξ + γsη on 
Ωs.  If χs is the characteristic function on Ωs, equal to 
unity on Ωs and zero outside Ωs, then the following 
functions form the basis: 

χs, χs ξ, χs η,   s = 1, ... , 2n . 

Let us construct the new basis of them: 

(χs + χs+n), (χs + χs+n) ξ , (χs + χs+n) η , 

(χs $ χs+n), (χs $ χs+n) ξ , (χs $ χs+n) η , 

s = 1, ... , 2n , 
 

which consists of even and odd functions. Due to 
transition to the new basis, the problem dimensionality 
is halved. Other combinations of subapertures could 
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also be formed, in order to construct the basis 
consisting of even and odd functions. This reasoning is 
also applicable to the odd number of subapertures. 

 

3. OPTIMIZING METHOD FOR SOLUTION OF 

THE PHASE PROBLEM 

 

Let us consider the pupil function G, the product 
GG0, and the Fourier transform F(GG0) as elements of 
the Hilbert space H of complex-valued functions, 
square integrable on the pupil plane and the image 
plane, respectively. Let us form two sets of the initial 
data in the phase problem: 

V1 = { g: | g(x, y)| ≤ h1/2(x, y) ,  (x, y) ∈ ω } 

and 

V2 = { g: g = F(GG0), | G(ξ, η)| ≤ A(ξ, η) for Ω, 

G(ξ, η) = 0 outside Ω } . 
 

Thus, to solve the phase problem, means to find 
the point of boundary intersection of these two sets 
äV1 ∩ äV2. Let G′ be the solution of the phase 
problem, and g′2 = F(G0G′) ∈ äV2. The method of 

seeking the point from äV1 ∩ äV2 depends on the 
selected strategy. One strategy may consist in 
construction of the sequence of points gn ∈ H, 
approaching äV1 ∩ äV2. Another strategy may consist 
in construction of the sequence of two points g1n ∈ äV1 
and g2n ∈ äV2, which become closer with increasing n. 
Let us consider the second strategy named the method 
of problem dimensionality extension.   

Let us give the following functional at the set of 
pairs (g1, g2) ∈ äV1 × äV2: 

J(g1, g2) = || g1 $ g2 ||
2

ω

 =⌡⌠    ⌡⌠ 

ω

|(g1 $ g2)|2 dxdy.   (11) 

The pair (g′1 = g ′2, g ′2) gives the absolute minimum 
to the functional (11) at äV1 × äV2, which is equal to 
zero. Herefrom the choice of the algorithm for 
construction of the minimizing sequence (g1n, g2n) of 
the functional (11) gives the iteration method for PhP 
solution. 

The following definition will be needed in our 
consideration. Let g0 is the point of H, and V is the 

closed set of H. Let us call the point g∼ ∈ V a 
projection of g0 on V, if  

|| g∼ $ g0|| = 
g ∈ V
min  || g $ g0|| . 

The g∼ projection will be designated as  g∼ = PV g. 
It follows from the equality 

(g1, g2) ∈ äV1× äV2 
min J(g1, g2) = 

g2 ∈ äV2

min  
⎝
⎛

⎠
⎞

 

g1
 ∈ äV1

min  J(g1,
 g2)  

that the minimization problem of the functional (11) at 
the set äV1 × äV2 can be reduced to the minimization 
problem of the functional 

J2(g2) = 
g1 ∈ äV1

min J(g1, g2) = || g∼1 $ g2|| ω
2 = || g∼1 $ g2|| ω + ω′

2
 , 

at äV2, where 

g∼1 = PäV1
 g2 = 

⎩
⎨
⎧h1/2 ei arg g2 for ω,

g2 for ω′;
  

ω′ is the space complementing ω to the whole plane 
OXY. 

The functional J2(g2) can be also written as 
follows: 

 

J2(g2) = || h1/2 $ | g2 | || ω
2 . 

 

The solution of PhP based on minimization of the 
functional J2(g2) was studied in Ref. 2. 

Let us construct the algorithm of the coordinate-
wise descent to the minimum of the functional 
J(g1, g2). Let g2,n be the nth approximation to g ′2. The 

approximation of g1,n to g′1 will be found from the 
condition J(g1,n, g2,n) = 

g1 ∈ äV1

min  J(g1, g2,n), i.e. 

g1,n = PäV1
 g2,n. At fixed g1,n let us find g2,n + 1 from 

the condition  

J(g1,n, g2,n + 1) = 
g2 ∈ äV2

min  J(g1,n, g2) ≤ J(g1,n, g2,n) . 

From the definition of the functional J(g1, g2) and the 
projection onto a set, it follows that  

g2,n + 1 = PäV2
 g1,n = PäV2

 PäV1
 g2 . 

However, it is just the GZ functional, which is one of 
the main methods for PhP solution mentioned in 
Section 1. Thus, application of the second strategy 
allows increase in the number of methods for PhP 
solution. For example, the gradient descent to the 
minimum of the functional J(g1, g2) by both 
coordinates may prove preferable, at least at some 
iterations. 

Let us made the following transformations in the 
functional (11): 

J(g1, g2) =⌡⌠    ⌡⌠ 

ω

(| g1 

|2 $ 2Re g*
1 g2 + | g2 

|2) dxdy = 

=⌡⌠    ⌡⌠ 

ω

| g1 

|2 dxdy $ 2Re⌡⌠    ⌡⌠ 

ω

g*
1 g2 dxdy $ 

$⌡⌠    ⌡⌠ 

ω′

| g2 

|2 dxdy + ⌡⌠    ⌡⌠ 

ω + ω′

| g2 

|2 dxdy . 

With the help of the Parseval  equality  we 
establish that the sum 

 

⌡⌠    ⌡⌠ 

ω

| g1 

|2 dxdy + ⌡⌠    ⌡⌠ 

ω + ω′

| g2 

|2 dxdy = 
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=⌡⌠    ⌡⌠ 

ω

h dxdy +⌡⌠    ⌡⌠ 

Ω

A2 dξdη 

 

is constant at äV1 × äV2, therefore the minimization 
problem of the functional (11) is tantamount to the 
maximization problem of the functional  

J(g1, g2) = 2Re⌡⌠    ⌡⌠ 

ω

g*
1 g2 dxdy + 

+⌡⌠    ⌡⌠ 

ω′

| g2 

|2 dxdy for V1 × V2 . (12) 

It is shown in Ref. 7 that the intensity distribution 
in the image space contains the complete information 
about phase of the wave Φ even in the case, when an 
object is unknown. Many authors2 use the intensity 
distributions in several planes (parallel to the focal 
one) for obtaining the reliable estimate of the phase 
from PhP solution. In Section 2 the efficiency of 
application of defocusing and, in more general form, 
controlled phase modulation of the wave for PhP 
solution is demonstrated. Therefore, with regard for 
phase modulation G0(α) = eiαϕ(ξ,η), we can consider the 
following functional, more general than that given by 
Eq. (11): 

J1(g1, g2) = ⌡⌠ J1(g1, g2, α) dμ(α)  (13) 

at the set of pairs (g1, g2) ∈ äV1 × äV2, 
where 

V1 = {g1: | g1(x, y, α)| ≤ h1/2(x,y,α), (x,y) ∈ ω} ,  

and J1(g1, g2, α) is the functional (12), 

V2 = {g2:  g2(x, y, α) = F(G0(α)G),   |G| ≤ A  at  Ω;  

g2 = 0 outside Ω} 

at different α, dμ(α) is the measure at the set of α 
values. 

Let us find the variation of the functional (13) at 
the point (g1, g2): 

δJ1(g1, g2) = ⌡⌠ δJ1(g1, g2, α) dμ(α) , 

where 

δJ1(g1, g2, α) = 2Re⌡⌠    ⌡⌠ 

ω

(g*
2δg1 + g*

1δg2) dxdy + 

+ 2Re⌡⌠    ⌡⌠ 

ω′

g*
2δg2 dxdy . 

Introduction of the function g∼1 = 
⎩
⎨
⎧g1 at ω
g2 at ω′

 allows us to 

write down the variation  

δJ1(g1, g2, α) = 2Re⌡⌠    ⌡⌠ 

ω

g*
2δg1 dxdy + 

+ 2Re ⌡⌠    ⌡⌠ 

ω + ω′

g∼*
1δg2 dxdy . 

In the polar coordinates g1 = h1/2eiθ and 

G2 = AeiΦ, hence  

δJ1(g1, g2, α) = 2Re⌡⌠    ⌡⌠ 

ω

ig*
2 g1δθ dxdy + 

+ 2Re ⌡⌠    ⌡⌠ 

ω + ω′

iG*
2G2δΦ dxdy . 

Here, it is taken into account that the Parseval holds 
true 

⌡⌠    ⌡⌠ 

ω + ω′

g∼*1δg2 dxdy = ⌡⌠    ⌡⌠ 

ω + ω′

(F$1(g∼1)
$1)*δF$1(g2) dξdη ; 

G0(α)G
∼

1 = F$1(g∼1) ,   G0(α)G
∼

2 = F$1(g∼2) . 

Finally, we obtain that  

δJ1(g1, g2) = $2Im ⌡⌠ dμ(α)⌡⌠    ⌡⌠ 

ω

g*
2g1δθ(x,y,α) dxdy $ 

$ 2Im ⌡⌠    ⌡⌠ 

ω + ω′⎝
⎛

⎠
⎞

⌡⌠ G
∼
*
1dμ(α)  G2δΦ dξdη 

and the functional derivative J ′1 with respect to the 

phase components of the functions g1 and G is equal to  

J ′1 = $2Im 
⎝
⎛

⎠
⎞ig*

2 g1,⎝
⎛

⎠
⎞

⌡⌠ G
∼
*
1dμ(α)  G2  . 

It can be directly checked that the GZ algorithm 
for the functional (13) is constructed by the scheme 

g2,n(α) ;  g1,n(α) = 

⎩
⎨
⎧

⎭
⎬
⎫

 
h1/2(α)ei arg g

2,n(α) at ω,

g2,n(α) at ω′;
 

G2,n + 1 = A arg ⌡⌠ G
∼

1 dμ(α); 

g2,n + 1(α) = F(G0 G2,n + 1) . 

The method of dimensionality extension can be 
also applied for determination of the point of 
intersection of the finite number of sets. 
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