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We propose an approach to deconvolution of satellite images of the Earth’s surface recorded 
under conditions of atmospheric distortions. The specific feature of this approach is that the point spread 
function (PSF) used in the linear model of reconstruction is unknown and thus it ought to be estimated 
first. To do this, the image itself is used together with the information that the observed scene contains 
objects having certain brightness contrast. We use the Gumbel distribution of extrema as the stochastic 
model of degraded image fragments with high gradient. Otherwise, the Johnson curves are used in the 
description. The Bayes decision rule that uses these distributions isolates extremal gradients. The 
variations of brightness along the directions of gradients in the blurred part of the image serve a basis for 
reconstructing the PSF. The image itself is recovered using a standard approach. Illustrations to the PSF 
identification and image reconstruction are also given in the paper. 

 

Introduction 
 
In analysis of the Earth’s surface images using 

algorithms of image recognition and automatic 
classification, the problem on pre-processing the video 
data to eliminate distortions caused by the atmospheric 
aerosols and aerosol formations (haze, fog) is very 
urgent. The task of video data correction itself is quite 
a complicated problem, because the transfer operator of 
the atmosphere, at the time of image recording, is, as a 
rule, unknown (in a model this operator is determined 
by the point spread function). The particular optical 
weather occurring at the time of a satellite overflight 
can differ significantly from the mean one. The problem 
arises on the PSF estimation or retrieval from the 
information just contained in the blurred image itself. 

We will consider images of two types. The first 
type includes images of a sufficiently large number of 
scenes with surface objects with gradient jumps of 
radio brightness. The second type incorporates 
sufficiently homogeneous surfaces with quasistationary 
areas of roughness. 

Depending on the type of an image, we shall 
consider two approaches to reconstruction of the PSF.1 
Assume that we can isolate, in some way, a fragment of 
a blurred image, within which the PSF can be 
considered constant, although being unknown. Let us 
consider the problem on reconstructing the PSF from 
the information extracted from the blurred image itself. 
Such a reconstruction method will be referred to as 
adaptive, since thus estimated PSF is adequate under 
particular conditions of observations accurate to errors 
of image recording. The following a priori assumption 
will be taken as a working hypothesis: boundaries of 
the physical objects within the observed fragment to be 
retrieved are sharp. Such boundaries are, for example, 

forest$ride, forest$road, river$riverside, ploughed 
land$field, and other surfaces. If the degree or 
character of these blurred boundaries is estimated in 
some way, then the PSF can be reconstructed as well. 
The œblurredB values of image gradients correspond to 
boundaries of physical objects, which must be clearly 
seen (without blurring). (At the same time, the image 
certainly includes objects with smoothly varying 
intensity, which have the whole spectrum of gradient 
values.) Thus, in the first approximation the following 
steps are needed in the algorithm for solution of this 
problem: 

(a) isolation of a stationary area within a blurred 
image, within which the PSF keeps unchanged; 

(b) differentiation of the obtained image and 
construction of the distribution histogram of the 
gradients to be estimated; 

(c) splitting of the obtained histogram into two 
distributions with the corresponding weighting factors. 
One of these distributions (right-hand oriented) 
describes the distribution of extremal gradients 
(situation A0), while the another (left-hand oriented) 
describes all other non-gradient brightness jumps 
(situation A1). That is, the task is to identify the mixed 
distribution; 

(d) construction of the B ayes decision rule for 
checking two hypotheses: H1 is a gradient hypothesis, 
and H0 is a non-gradient one. This rule reveals the 
areas in the video data, which correspond to boundaries 
of sharp but blurred brightness differences of high-
contrast surface objects; 

(e) scanning within only these areas of the video 
data for determining the degree of their blurring and 
thus obtaining œfragmentsB for reconstruction of the 
symmetric PSF; 
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(f) once having the PSF obtained, one can 
reconstruct the image using one of the standard 
methods, for example, the method of inverse filter. 

The second approach is based on the method of 
homomorphic filtration (Ref. 2, p. 254). In this case, 
the unknown PSF is estimated by making use of the 
signal and noise covariation functions. In their turn, 
these covariation functions are estimated using 
quasistationary areas of the video data.1 Thus, in this 
case the information on blurring of the image texture is 
used. In this paper we do not consider the second 
method of image correction. 

 

1. Spatial differentiation of images 
 

Let us consider the search for gradient jumps of 
brightness and the approach to estimation of such 
differences. To do this, let us introduce the concept of 
the vicinity of an image point under analysis (Ref. 3, 
pp. 69$87). Assume, that the image to be analyzed is 
digitized, and the digital presentation has the form of a 
2D matrix {zji}, where zji is the digitized brightness at 
the point (pixel) with coordinates (i, j) in the M × N 
plane of the observed image. The set of elements {zji} of 
a local image area with the coordinates (i, j) falling 
within the square of (2l + 1) × (2l + 1) pixels will be 
called the fragment with the central element 
(i = 0, j = 0) and the local coordinate system  
$l ≤ i ≤ +l, $ l ≤ j ≤ +l, where l is the size of a 
window. To describe the behavior of brightness {zji} 
within the fragment (2l + 1) × (2l + 1), we use the 
Haralic#Watson facet model, which was introduced in 
Ref. 3. In this model local image characteristics are 
described by the plane sections $ facets. The equation 
of this plane in the Cartesian coordinate system has the 
form 

 Ax + By + Cz + D = 0 , 

and at D = 0 the plane goes through the origin of 
coordinates. The coefficients A, B, and C are equal to 
the x, y, and z-projections of the vector A = (A, B, C)T 
normal to the plane; A is the normalized directing 
vector of the plane; T denotes transposition. From here 
on we use the following version of the equation: 

 z = $ 
A

C
 x $ 

B

C
 y $ 

B

C
 = αx + βy + μ ,  (1) 

where q ≠ 0. Let us draw a plane through the set of 
digitized intensities for the vicinity of some central 
point, so that the following square-law  discrepancy 
criterion is minimum: 

 J(α, β, μ) = ∑
j

 ∑
i

 [αi + βj +μ $ zji]2 = min
(α, β, μ)

 , (2) 

where zij are the values of brightness in the vicinity of 
the central point with the local coordinates i = 0 and 
j = 0; the summation limits are $ l and + l. Upon 
differentiating J( ) with respect to the parameters to be 
estimated and making the partial derivatives to be 

equal zero, we obtain necessary conditions of the 
extremum 

⎩⎪
⎨
⎪⎧

дJ(α, β, μ)

дα
 = ∑

j

 ∑
i

 [αi + βj +μ $ zij] i = 0,

дJ(α, β, μ)

дβ
 =∑

j

 ∑
i

 [αi + βj +μ $ zij] j = 0,

дJ(α, β, μ)

дμ
 = ∑

j

 ∑
i

 [αi + βj +μ $ zij] = 0.

  

 

Removing the brackets in this equation and summing 
up, we obtain 

 

⎩
⎨
⎧

α∑
j

 ∑
i

  i2 = ∑
j

 ∑
i

 zji i = ∑
i

 i ∑
j

 zji ,

β∑
j

 ∑
i

 j2 = ∑
j

 ∑
i

 zji j = ∑
j

 j∑
i

 zji ,

∑
j

 ∑
i

 μ = ∑
j

 ∑
i

 zji .

  (3)    

From this we find the estimates of the unknown 
parameters 

 α̂ = 

3∑
i

 i
 
∑
j

 zji

l (l + 1)(2l + 1)2 , β̂ = 

3∑
j

 j
 
∑
i

 zji

l (l + 1)(2l + 1)2 , 

 μ̂ = 

∑
j

 
  
∑
i

 zji

(2l + 1)2 .  (4) 

Thus, the equation of the plane (1) has the 
following form: 

 z = 

3∑
i

 i
 
∑
j

 zji

l (l + 1)(2l + 1)2 x +  

 + 

3∑
j

 j
 
∑
i

 zji

l (l + 1)(2l + 1)2 y + 

∑
j

 
 
∑
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or, introducing the designations: 
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 γ′ = l (l + 1) (2l + 1)2,   α′ = $ 3 ∑
i

 i ∑
j

 zji
 , 

 β′ = $ 3 ∑
j

 j ∑
i

 zji
 ,   D = l (l + 1)∑

j

 ∑
i

 zji
 , 

we have 

 γ′ z + α′ x + β′ y + D = 0 . 
The equation of this plane written in terms of direction 
cosines has the form 

 cos θz z + cos θx x + cos θy y + p = 0,  (5) 
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where 

cos θx = 

$ 3 ∑
i

 i
 
∑
j

 zji

(γ′)2 + (α′)2 + (β′)2
 , 

cos θy = 

$ 3 ∑
j

 j
 
∑
i

 zji

(γ′)2 + (α′)2 + (β′)2
 , 

cos θz = 
l (l + 1)(2l + 1)2

(γ′)2 + (α′)2 + (β′)2
 , 

p = 
l (l + 1)

(γ′)2 + (α′)2 + (β′)2
 . 

The facet model of a fragment is used for isolation 
of gradient areas of the image. The value of the image 
gradient at some point (x0, y0) is estimated by the 
spatial variable, defined as the ratio of the area ds of 
the slant plane drawn through the set of brightness 
values of the ensemble of points forming the vicinity of 
(x0, y0) within a (2l + 1) × (2l + 1) square to the area 
of the base of this fragment dΔ. If writing the equation 
of the plane in terms of the direction cosines (5), we 
have the following estimate of the gradient: 

 
ds

dΔ
 = 

1
| cos θz |

 = 

 = ⎣
⎢
⎡

⎦
⎥
⎤

⎝
⎜
⎛

⎠
⎟
⎞3∑

i

 i
 
∑
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l (l + 1)(2l + 1)2

 

2

 + ⎝
⎜
⎛

⎠
⎟
⎞3∑

j

 j
 
∑
i

 zji

l (l + 1)(2l + 1)2

 

2

 + 1

 

1/2

. 

(6) 

Thus obtained estimate of the gradient is assigned to 
the central point of the fragment with the local 
coordinates i = 0 and j = 0. B y performing similar 
differentiation in each fragment of the image under 
analysis and assigning the values of the corresponding 
gradients to central elements of the sliding window of 
(2l + 1) × (2l + 1) pixels, we can pass from the initial 
image of brightness values to the image of gradients 
{wji}. The procedure of gradient determination 
introduced above possesses filtering properties, 
although it results in an additional smoothing of the 
parameters being estimated. 

 

2. Decision rule for isolation  
of extremal gradients 

 
To construct the B ayes decision rule for detection 

and isolation of extremal values of gradients in the 
obtained gradient image, we need, first of all, to 
reconstruct the probability models of the situations that 
`1 is a gradient and `0 is not a gradient and estimate 
their a priori probabilities. Toward this end, we should 
split the obtained distribution histogram of gradients 
into two distributions, one of which being the 
distribution of extremal gradients and the other one the 
distribution of the rest non-extremal gradients. That is, 

we should identify the components of the following 
model: 

 g(x) = P f0(x) + Q f1(x) ,  (7) 

where f1(x) is the distribution of extremal gradients; 
f0(x) is the distribution of non-extremal gradients; P 

and Q are the a priori probabilities of the situations `0 
and A1, respectively; P + Q = 1, x = w. Then the 
problem of optimization of the square-law quality 
criterion arises in the following form: 

 J(θ) = 
1
m

 ∑
j=1

m

 {
∼
f(xj) $ P f0(xj) $ Q f1(xj)}2 ,  (8) 

where 
∼
f(xj) is the histogram of image gradients 

distribution; θ is the vector of unknown parameters 
consisting of the component P and parameters of the 
density functions f0(x) and f1(x) belonging to the 
parametric families of functions. It should be noted 
that the problem of reconstructing components of a 
mixture has a solution only if those can be identified. 
This condition can hardly be formalized and checked. 
From the geometrical point of view it means that f0(x) 
and f1(x) must have pronounced modes. Therefore, the 
fraction or measure of fragments with the extremal 
values of gradients should be large enough for the 
density function f1(x) to manifest itself. 

The problem of splitting the components of a  
mixed distribution not always has a solution because of 
a high uncertainty. The a priori data on the component 
distributions should be involved. In this connection, let 
us refer to the following fact of mathematical statistics 
or, to be more precise, the theory of extremal values. It 
is known that the distribution density of maxima of n 
independent random values in the asymptotics of the 
growing number of observations n → ∞ of type I 
[Gumbel distribution of maximum values (Refs. 4 and 
5, p. 137)] has the following form: 

 f1(x) = f1(x; μ, σ) = 
1
σ
 exp ⎣

⎡
⎦
⎤$ 

1
σ
 (x $ μ) $ e$(x $ μ)/σ

 , 

 $ ∞ < x < + ∞, $ ∞ < μ < + ∞, σ > 0,  (9) 

where μ is the parameter (mode) of the distribution 
center; σ is the distribution scale; and the estimated 
mathematical expectation μ̂ and variance σ̂ are 
connected with μ and σ as μ̂ = μ + 0.577 σ and  
σ̂ = 1.283 σ. As f0(x) we selected the Johnson 
distribution SB with the parameters ε (lower boundary 
of x), λ (sample size), and the shape parameters η and 
γ. Since some parameters can be estimated from the 
data sample,5 the vector of unknown parameters has 
actually only three components and θ = (P, η, γ)T, 
where T denotes transposition. To optimize the criterion 
(8), the adaptive methods of search for extremum are 
used.6 As the mixture is identified, the B ayes decision 
rule is applied to check two hypotheses: H1 is a 
gradient and H0 is not a gradient. This decision rule 
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reveals all image areas with sharp, but blurred 
brightness boundaries: 

 u = arg max
{0,1}

 {P f0(x), Q f1(x)} ,  (10) 

where u is the decision or the number of a hypothesis, 
u ∈ {0,1}. 

The B ayes decision rule (10) transforms the image 
of gradients into the image of contour lines 
corresponding to the extremal values of gradients. 

 

3. The reconstruction of a PSF  
and retrieval of the image 

 

In the previous phase of the procedure we have 
revealed from the blurred image the areas with blurred 
boundaries, and it is of greatest interest for us linear 
sections of images. Let us consider the problems 
associated with reconstruction of the PSF using a  
blurred boundary.1,2 The point spread function is 

assumed normalized and ⌡⌠
$ ∞

∞

 ⌡⌠
$ ∞

∞

 h(x, y) dx dy = 1. In a 

projection to the plane zOx the PSF has the form 

hl(x) = ⌡⌠
$ ∞

∞

 h(x, y) dy. At the same time, in the initial 

3D space we have a line or a slit spread function. For 
the edge of a half-plane, the intensity distribution 
along the direction normal to the edge is described by a 
sum of the line spread functions, so the obtained 
intensity has the following form7: 

 I(x) = ⌡⌠
$ ∞

x

 hl(u) du .  (11) 

Thus, if we know the edge spread function, then 

hl(x) = 
dI(x)

dx
. Assume that the PSF is axisymmetric. In 

this case the spatial PSF can be reconstructed using 
only one cross section $ projection of the PSF onto a 
plane. Actually, the spectrum of the PSF projection 
onto the plane involving the Oz axis and coming at an 
angle θ to the axis Ox, or (because of the axial 
symmetry of the PSF) onto the plane zOx, has the 

form Gl(u) = ⌡⌠
$ ∞

∞

 hl(x) e$iux dx. The 2D Fourier 

transform of the PSF can be written as follows: 

F(u, v) = ⌡⌠
$ ∞

∞

 ⌡⌠
$ ∞

∞

 h(x, y) exp {$ i(ux + vy)} dx dy.  (12) 

B y comparing F and G, we can see that 

G(u) = F(u, v) v = 0. From this it follows that hl(x) is 

the cross section of h(x, y) by the plane zOx and, 

because of the axial symmetry, an arbitrary central 
cross section. In this case, h(x, y) can be reconstructed 
from the cross section hl(x) by setting the radius-vector 

r = x2 + y2, that is, hl(r) = h(r). Thus, to reconstruct 
the PSF from the actual blurred image, one should 
estimate the edge spread function. Then it should be 

differentiated to obtain the PSF cross section. 
Analyzing the image, note that actual physical 

objects, whose boundaries are step-wise functions of 
brightness jumps, are characterized by some value a of 
the brightness difference. So, if blurring of a unit step 
gives the intensity I(x), then blurring of the step with 

the contrast a gives a I(x). In this case 
d{a I(x)}

dx

 = ahl(x) and the coefficient a for each detected edge 

can be estimated by normalizing a = ⌡⌠
$ ∞

∞

 ahl(x) dx. The 

next step is to reveal edge blurring sections I(x) 
coming through the points of maximum values of 
gradients and to obtain an average section: 

 Iav(x) = 
1
N

 ∑
i = 1

N

 Ii(x) ,  (13) 

where N is the number of sections with high gradients 
found. 

Let us first construct the local coordinate system 
for estimation of the edge blurring profile, which will 
be referred to as a section. Assume that x = 0 and y = 0 
in the equation of the plane (5), then z = $ D/γ′ is the 
œcenterB of the plane. Let us find the projection of the 
normal vector r onto the plane yOx, which makes the 
angle ψ with the Ox axis. This projection cannot be 
zero, because the isolated plane under consideration  
has a high gradient: 

 ψ = arccos 
cos θx

sin θz
 , 

where θx, θy, and θz are the angles between the 
directing vector of the plane and Ox, Oy, and Oz axes, 
respectively. Thus, in the plane xOy we pass to the 
œunrolledB coordinate system and, making x′ and r 
coincident, we obtain 

 x′ = x cos ψ + y sin ψ, 

 y′ = $ x sin ψ + y cos ψ ,  (14) 

where x′ y′ z′ is the new coordinate system associated 
with the section. 

To obtain the brightness distribution over the 
section, we should determine the intensities of the 
blurred image along the coordinate axis Ox′ in the 
direction of the gradient (14). To decrease the error 
due to noise, we should take several neighboring paths 
and average them over the area Δ (size of the PSF 
carrier). Then we should smooth the data by a spline, 

determine aI(x), and differentiate 
daI(x)

dx
 = ahl(x). 
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4. Example of a degraded image 
retrieval 

 
To illustrate the proposed approach, we took the 

image of the surface recorded from the RESURS 
satellite with the resolution pixel of 45×45 m2 size. This 
image and the fragment isolated for analysis is shown 
in Fig. 1.  

 

 
 

Fig. 1. The initial image with the fragment isolated for 
correction. 
 

 

Fig. 2. Simulated degradation with the PSF in the form of 
weighted sum of two Gaussian curves. 
 

We did not use data on the scale and geometry of 
the image and did not assign the image to any 
particular atmospheric conditions. Our purpose was 
only to illustrate the possibility of simultaneously 

estimating the PSF and reconstructing the blurred 
image. So all dimensions for simplicity are in pixels or 
digitized readouts. To simulate fog, the linear model of 
image convolution was used with the PSF in the form 
of a sum of two Gaussian density functions with the 
weights p = 0.1 and q = 0.9 and the rms deviations 
σp = 1.0 and σq = 4.0, respectively. The degraded 
version of the initial image is shown in Fig. 2, and its 
projection onto the plane of the model PSF is shown in 
Fig. 3 (curve 1).  

 

 
 

Fig. 3. Projection on the plane of the PSF simulating 
degradation (1) and reconstructed using sections (2). 

 

The result of processing of the degraded image by 
the algorithm of spatial differentiation and isolated 
gradient differences of radio brightness is shown in 
Fig. 4. The histogram of the obtained gradient 
differences is shown in Fig. 5a. Then the observed 
spectrum of gradient differences was presented by a 
sum of two weighted density functions, the left-hand 
one being the model of non-gradient class (situation 
A0) and the right-hand one is the model of a gradient 
class (situation A1).  

 
Fig. 4. Gradients of the degraded image. 
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a b 

 

Fig. 5.  Histogram of the gradient values distribution (a) and 
reconstructed Johnson and Gumbel distributions with the 
weights P and Q (b). 

 
Figure 5b shows the gradient distribution under 

condition A0, which was reconstructed using Johnson 
approximation SB, and the gradient distribution under 
the condition A1, which was reconstructed using 
Gumbel distribution of extremal values. The B ayes 
decision rule applied to check the hypotheses m0 and 

m1 was constructed assuming these distributions. It 
isolates the extreme gradients of brightness, and thus 
the problem of revealing objects with distinct 
boundaries, which look blurred in the image, is solved. 
B y scanning the blurred image in sections normal to the 
revealed contour lines of extremal brightness differences 
(Fig. 6), we can obtain separate realizations of the edge 
spread function (11) and (13), using which one can 
readily pass to the PSF.  

 

 
 

Fig. 6. Extremal gradients revealed by the Bayes decision 
rule. 
 

Figure 3 shows the projection of thus 
reconstructed PSF onto the plane (curve 2) and, for a 
comparison, the model PSF (curve 1). These curves 
differ by 5% according to the square-law quality  

criterion. Then the image fragment was reconstructed 
with the synthesized PSF by the method of inverse 
filtration. This fragment is shown in the figures within 
the square frame. Figure 7 shows the reconstructed 
fragment of the blurred image (a) and, for a 
comparison, the initial image (b). The blurred and 
initial images differed by 10% according to the square-
law quality criterion, whereas the recovered and the 
initial images differ by 4%. This demonstrates the 
efficiency of the approach proposed. 

 

a b 

 

Fig. 7. Fragment of the image retrieved by inversion of the 
PSF (a) and the corresponding fragment of the initial  
image (b). 

Conclusion 

The approach proposed for retrieval of degraded 
images is worth being used only in combination the a 

priori information of the following character. First of 
all, an area of homogeneously degraded video data 
characterized by the constant PSF must be found. 
B esides, this area must contain objects with sharp, 
but observed as blurred, boundaries. In principle, 
using this technique it is easy to reconstruct the PSF 
with characteristics smoothly varying in space, but 
this strongly complicates image reconstruction. 
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