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When solving problems of optical location, communication, and energy transmission, a task
appears of transporting radiant energy in the form of a light beam to an object located in a randomly
inhomogeneous medium. In this case, as a rule, it is necessary to maximize the amount of energy
delivered to the object. As is well known, radiation scattering by inhomogeneities of the refractive
index of the medium leads to a decrease of the average intensity in the near-axial region of the light
beam and to the appearance of intensity fluctuations, which taken together substantially degrade the
energetic characteristics of the indicated systems. Several simple variants of the adaptive control
for beam parameters, based on the principle of reciprocity of radiation propagation through an
inhomogeneous medium, are proposed. The information on the medium inhomogeneties distribution
along the beam propagation path is derived from the intensity distribution in the image plane of
an object.

Introduction

When solving the problems of optical location,
communication, and energy transmission, a radical
means of preventing undesirable effects is an
application of various adaptive methods, which allows
one in principle to almost completely eliminate the
influence of the medium inhomogeneities. The essence
of these methods reduces to controlling the initial
distribution of the beam field on the basis of
information about the instantaneous distribution of
inhomogeneities of the medium, in which the beam is
propagating.

1. Use of the reciprocity principle
to control the parameters

of an optical beam

Introduce the Cartesian coordinate system (õ, ρ)
(see Fig. 1) so that to direct the X axis along the
direction of the beam propagation.

Fig. 1. Block-diagram of an adaptive system for aiming and
focusing optical beams.

Let the initial distribution of the beam field
U0(ρ) be prescribed in the õ = 0 plane. At the point
(L, R) of the inhomogeneous medium, the field can
be written in the form

2
b( , ) dU L = ρ∫∫R U0(ρ)G(L,R;0,ρ), (1)

where G(L, R; 0, ρ) is the Green's function of the
problem or, equivalently, the field of the spherical
wave at the point (0, ρ) of the inhomogeneous
medium, created by a point source located at the
point (L, R). The radiant intensity at that point then
has the form

Ib(L, R) =

2 2
1 2d d= ρ ρ∫∫ Γ0(ρ1,ρ2)G(L,R; 0,ρ1)G*(L,R; 0,ρ2), (2)

where Γ0(ρ1,ρ2) = U0(ρ1)U0*(ρ2) is the initial value of
the beam coherence function.

In the case of a partially coherent beam Γ0(ρ1,ρ2) =
= <U0(ρ1)U0*(ρ2)>, where <…> is the averaging that
is carried out over the random fluctuations of the
source (here it is understood that Ib(L, R) in Eq. (2)
is also averaged over source fluctuations).

Let radiation from a point object located at the
point (L, R), be incident upon the receiver aperture
of the optical system located in the plane x = 0.
Assuming that the medium inside the optical system
is homogeneous, the field in the plane x = –l can be
written in the form

Uim(–l,ρ)= 2dW ρ∫∫ G(L,R;0,ρ)A(ρ) ×

× exp( )iS(ρ) G0(0,ρ ;–l,r). (3)

Here A(ρ) is the amplitude transmission coefficient of
the receiving optical system, S(ρ) is the phase shift
introduced by the optical system (see Fig. 1), W is a
constant which depends on the radiation power
emitted by the point object, G0(x0, ρ0; x, ρ) is the

  r                                           R

A(ρ), S(ρ)

x = –l x = 0 x = L
X



V.P. Lukin Vol. 18,  Nos. 1–2 /January–February  2005/ Atmos. Oceanic Opt.  67

Green's function for the homogeneous medium, which
has the form

0 0 0

2
0

0
0 0

( , ; , )

( – )
exp – .

2 – 2 –

G x x

kk
ik x x i

x x x x

=

  = + π   

ρ ρ

ρ ρ

Using formulas (3) and (4), we obtain the following
expression for the radiant intensity in the plane
x = –l:

2 2

im 2 2(– , )
4
W k

I l
l

= ×
π

r

4
1,2d× ρ∫∫ G(L,R; 0,ρ1)G*(L,R; 0,ρ2)A(ρ1)A(ρ2) ×

× exp( )i[S(ρ1) – S(ρ2)] ×

2 2
1 2 1 2exp ( – ) – ( – ) .

2
k k

i i
l l

 × ρ ρ 
 

r ρ ρ  (5)

By virtue of the reciprocity principle

0 0 0 0 0 0( , ; , ) ( , ; , ),G x x G x x=ρ ρ ρ ρ  (6)

comparing Eqs. (1) and (3), taking into account Eqs. (4)
and (6), we can easily see that1,2 upon fulfillment of
the condition

2

0( ) ( )exp ( ) – ,
2 2
k k

U q A iS ikl i ik
il l l

 ρ
= + + 

π  

rρ
ρ ρ ρ  (7)

where q = const, the field of the coherent beam at the
point (L, R) coincides to within a constant factor
with the intensity of the radiation from the point
source at the point r in the plane x = –l, i.e.,

imb( , ) (– , ).U L ClU l=R r (8)

What is more, Eq. (7) does not depend on the position
of the source (i.e., on either L or R) and the parameters
(l, r) can be chosen quite arbitrarily on the basis of
convenience.

Similarly to Refs. 3 to 6, from Eqs. (2) and (5)
upon fulfillment of the condition

Γ0(ρ1,ρ2) =
2 2

2 24
q k

lπ
A(ρ1)A(ρ2)exp{[S(ρ1) – S(ρ2)] +

+ 2 2
1 2( )

2
k k

i i
l l

ρ − ρ − r(ρ1 – ρ2)}, (9)

we find that the beam intensity at the point (L, R)
coincides to within a constant factor with the intensity
of the radiation from the point source at the point r
in the plane x = –l:

2 2
imb( , ) (– , ).I L C l I l=R r (10)

Also, it is not hard to see that for a coherent beam,
for which Γ0(ρ1,ρ2) = <U0(ρ1)U0*(ρ2)>, fulfillment of
condition (7) also leads to Eq. (10).

Relations (7)–(10) are thus an exact consequence
of the reciprocity principle (6) and mean that the

field from the point source located at the point (L, R)
in the inhomogeneous medium having passed through
an opening with amplitude–phase transmission
coefficient A(r)exp(iS(r)) and being observed at the
point (–l, r) coincides with the field from a point
source located at the point (–l, r), which has passed
through the same opening and is being observed
at  the  point  (L, R) of the inhomogeneous medium.7

The initial distribution of the beam field U0(ρ)
is therewith treated as the result of the passage of a
spherical wave created by a source located in the region
x < 0 through a screen with some chosen value of the
amplitude–phase transmission coefficient.

 Equality (10) together with condition (9)
makes it possible to obtain information about the
instantaneous values of the intensity fluctuations
of the beam field at some remote point of the
inhomogeneous medium on the basis of intensity
measurements at an appropriately chosen point located
behind the optical system.

Below we consider one of the variants7–9 of
this possibility application to control order beam
parameters in order to maximize the radiation
intensity at the point (L, R).

1.1. Choice of the time of emission
of the radiation pulse

Let us consider the simplest case4,7 of beam
parameter control – a choice of the moment of the
radiation pulse emission. In this case, we pose the
problem of choosing the time of emission of the laser
pulse in such a way that the field intensity at the object
is maximized. Here we also assume that the power of
the radiation emitted by the object does not fluctuate,
and the propagation time to the object and back, as
well as the duration of the pulse are so short that the
intensity has not time to vary to any significant
extent during this time. To solve this problem, it
is necessary to track the intensity of self-radiation
of the object at some point (–l, r) located behind the
optical system with amplitude–phase transmission
coefficient A(r)exp(iS(r)), defined by Eq. (7), and to
emit the pulse at the moment when the intensity has
a significant positive peak.

For a coherent beam with initial field distribution

2

0 0( ) ( ) exp – ,
2
k

U I i
F

 ρ
=  

 
ρ ρ  (11)

where I0(ρ) is the initial intensity distribution, F is
the radius of curvature of the beam wavefront, for a
given value of l from Eq. (7) we have

2
0( ) ( );A I=ρ ρ

2 21 1
( ) – – – .

2 2
k k

S
l F f

ρ ρ = =  
ρ  (12)

Here f is the focal length of the optical system, and
these relations do not depend on the position of the
object relative to the beam axis. For a given value of

(4)
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f, it is not hard to see that when using a collimated
beam (1/F = 0), the observation plane should
coincide with the focal plane of the optical system.
When aiming a focused beam (F = +L), 1/f =
= 1/l + 1/L, i.e., the intensity should be recorded in
the image plane of the object.

1.2. Aiming of an optical beam

Let us investigate the problem of aiming the beam
at an object. In this case our goal is to determine the
direction of the beam axis that maximizes Ib(L, R).
Varying the beam direction is equivalent to introducing
a linear phase term in the initial field distribution,
i.e., in the case under consideration

0
0( ) ( )exp( ),U U ik= ρρ γρ

here γ is the direction of the beam axis, U0(ρ) is the
initial field distribution independent of γ. For a given
distance from the receiver aperture plane l to the
observation plane we choose the amplitude–phase
transmission coefficient such that

( )
2

0( )exp ( ) ( )exp .
2
k

A iS CU i
l

 ρ
=  

 
ρ ρ ρ  (13)

For initial field distribution (11), the condition (13)
again leads to Eq. (12). In this case the matching
condition (7) is fulfilled for

γ = –r/l, (14)

this means that the intensity distribution Iim(–l, r) in
the observation plane will be proportional to the
beam intensity at the object, if the direction of the
beam axis γ = –r/l. Thus, the best directions of the
beam axis in the sense of maximizing the intensity at
the object will be those that correspond to those r in
the recording plane, at which the intensity of the
radiation from the object is maximal.

Obviously, the above method of aiming the
beam can be combined for the case of pulsed
radiation with the above method of choosing the best
time for emitting the pulse. For aiming continuous
radiation at an object, it is necessary to aim the beam
in the direction determined by the brightest point of
the intensity distribution. By virtue of the fact that
matching conditions (13) and (14) do not depend on
the coordinates of the object (L, R), this aiming
method also provides for automatic tracking of the
motion of the object. Note also that the aiming method
being in a widespread use at the present time, based
on the center of gravity of the intensity distribution,
does not give the best beam direction in the sense
described above.

1.3. Focusing an optical beam

Let us consider the problem of aiming and
focusing a bounded coherent beam. In this case it is
necessary to optimize the direction and focal length
of the beam from measurements of the intensity

distribution in some region located behind the optical
system. The initial field distribution has the form

2
0

0( ) ( )exp ,
2
k

U U ik i
F

 ρ
=  

 
ρ ρ γρ  (15)

where γ and F are, respectively, the direction of the
beam axis and the focal length of the beam, both are
objects of control. Assume that U0(ρ) does not contain
any terms linear or quadratic in ρ that can be included
in the phase factor in Eq. (15), and let S(ρ) = S′(ρ) –
– lρ2/2f, where S′(ρ) also does not contain any
quadratic terms, and f is the focal length of the
receiving optical system. Upon satisfaction of the
equality

( ) 0( )exp ( ) ( )A iS CU′ =ρ ρ ρ  (16)

conditions (7) and (9) are fulfilled if

– / ;
1 1 1

– .

l

F f l

=

 =


rγ
(17)

Upon satisfaction of equality (16) and conditions (17)

2
sb( , ) (– , ),I L l I l≈R r

i.e., the intensity of the radiation from a point source
at the point (–l, r), located behind the optical system
will be proportional to the intensity of the beam
whose direction γ, and focal length F are given by
relations (17).

Thus, the best focal length of the beam F and
direction of its axis γ are the values defined by
relations (17), i.e., there exists a point (–l, r), at
which the quantity l2Is(–l, r) is at its maximum.
Instead of searching for the maximum of Is(–l, r) in a
three-dimensional space, we can vary the focal length
of the receiver system f in time with l fixed. It is not
hard to show that for the case of a homogeneous
medium, rules (16) and (17) ensure that the beam axis
is focused and aimed at the point object. Naturally, the
principle under consideration can be used only for
focusing the field without aiming the beam axis. In
this case, it is necessary to measure Is(–l, r) along
the extension of the beam axis into the region x < 0
and to choose F on the basis of the second of
conditions (17).

1.4. A partially coherent beam

Up until this point, the consideration has been
limited to coherent beams, for which the amplitude
and phase of the initial distribution U0(ρ) do not
undergo uncontrolled fluctuations, and fulfillment of
equalities (12), (13), and (16) is in principle possible.
In the case of a partially coherent beam, the phase
and/or amplitude invariably experience fluctuations,
which makes it impossible to satisfy relations of the
type (12), (13), and (16). Besides, it is obvious that
a partially coherent beam cannot be represented as
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the result of diffraction of a spherical wave by an
opening with regular amplitude–phase transmission.
Thus, relation (9) for a partially coherent beam is not
fulfilled, and the recording of the radiant intensity by
the receiver system does not allow one to predict the
behavior of the intensity of a partially coherent beam
at a remote object. Nevertheless, this problem can be
solved for one class of partially coherent beams.

 Let the intensity in the x = –l plane be
recorded not at a point, as earlier, but with the help
of a receiver of finite dimensions, described by a
spatial intensity transmission coefficient T(r0), whose
center, as before, is located at the point r. The
recorded radiant flux Is(–l, r) in this case, referring
to formula (5), can be written as

{ }

2
s 0 s 0 0
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1,2 1 22 2

1 2 1 2 1 2

2 2
1 2

1 2
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where

2
0 0 0( ) d ( )exp – .

k
F r T i

l
 =  
 ∫∫ r rρ ρ  (19)

A comparison of Eqs. (18) and (2) leads to the
matching condition

2 2

0 1 2 1 2 1 22 2

2 2
1 2 1 2 1 2

( , ) ( ) ( )exp{ [ ( ) – ( )]}
4

exp{ ( – ) – ( – )} ( – ),
2

q k
A A i S S

l

k k
i i F

l l

Γ = ×
π

× ρ ρ r

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ

the fulfillment of which leads to relation (10). The
above relation is a generalization of Eq. (9) and allows
us to extend the previously obtained results to the
case of partially coherent beams with the coherence
function

*
0 1 2 0 1 0 2 1 2( , ) ( ) ( ) ( – ).U U PΓ =< >< >ρ ρ ρ ρ ρ ρ  (21)

Coherence function of such a form arises if one assumes
that the beam undergoes spatially homogeneous
amplitude–phase fluctuations with the second moment
P(ρ).

As follows from Eqs. (9), (20), and (21), upon
fulfillment of the additional matching condition

2( ) d ( )exp –
k

P rT i
l

 =  
 ∫∫

r
rρ ρ  (22)

the solution of the above-described problems of
choosing the best time of pulse emission and aiming
and focusing of the beam becomes possible. In the
case of an object with brightness distribution M(r),
expression (5) takes the form

2 2
4 2 *

s 1,2 1 22 2

1 2 1 2
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1 2
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4
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2
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π
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×
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R
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ρ ρ

ρ ρ ρ ρ

ρ ρ

Here, obviously, one can only pose a task of maximizing
the integral

2
bd ( ) ( , ).RM I L∫∫ R R (24)

As was noted above, the approaches considered
here can be regarded as the simplest cases of adaptive
control for radiation parameters. Here we are
controlling only the total tilt of the wavefront (13),
(14), and/or its curvature. Currently available means
of adaptive control (multi-element mirrors, deformable
mirrors, etc.) allow one to control simultaneously a
large number of radiation parameters (in particular,
the wavefront) and to create with a high degree of
accuracy and speed the required phase distribution
in the radiation reflected from the mirror. The
fundamental difficulty here is the problem of working
out the requirements to the phase distribution to be
created.

Let the phase shift introduced by the optical
system receiving radiation from the point source be
the quantity subject to control (with the help of active
optical elements). If the realized phase shift Sm(ρ)
is such that the intensity of the received radiation
Is(–l, r) at some point r in the x = –l plane behind
the optical system is maximized in comparison with
other possible realizations S(ρ), then upon fulfillment
of matching condition (9), by virtue of relation (10),
the beam intensity at the point object will also be
maximized. At the same time, if there exists some
phase distribution of the beam (for a given amplitude
distribution), which maximizes the intensity at the
point object, then the intensity of the radiation of
the point object, at the point (–l, r), located behind
the optical system, with the same amplitude
transmission coefficient, is maximized if condition (7)
is fulfilled. The phase of the beam and the phase
shift of the optical system differ here by the regular
added term (kρ2/2l – krρ/l), which ensures that the
beam wave is focused in the x = –l plane and that its
axis is directed at the point r.

Thus, the necessary and sufficient condition for
maximizing the intensity of the coherent beam
radiation at a point object while controlling its phase
is the maximization of the intensity of the radiation
received from this point object. The problem of
maximizing the beam intensity at the object, which
may be inaccessible, reduces to the problem of
maximizing the intensity of radiation from the object
at some accessible point (–l, r).

 Obviously, all previously examined problems4–9,14

of beam aiming and focusing are simple special cases
of the scheme under consideration. The foregoing
generalizations of these problems to a partially

(20)

(18)

(23)
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coherent beam and an extended object hold for the
general phase control problem.

2. Control for parameters of an optical
beam based on reflected radiation

In the above problems it was assumed that the
object, to which radiation is being delivered, is a self-
luminant one or scatters radiation from some source
off to the side, which does not pass through the
inhomogeneous medium. Let now the object located at
the point (L, R) be illuminated by radiation, which
has passed through the layer of inhomogeneous
medium. The radiation scattered by the object passes
through the same layer and is received by the optical
system. Following the development of Eqs. (1)–(5),
we may write the radiation intensity at the point
(–l, r) located behind the optical system in the form

2 2 2 2
1 1 2 2 0 1 2

* *
1 2 1 2

1 2 1 2 0 1

*
0 2

( , ;– , ) d d d d ( , )

(0, ; , ) (0, ; , ) ( , ;0, ) ( , ;0, )

( ) ( )exp[ ( ( ) – ( )] (0, ;– , )

(0, ; , ),

RI L l C

G L G L G L G L

A A i S S G l

G l

′ ′= ρ ρ ρ ρ Γ ×

′ ′× ×

′ ′ ′ ′ ′× ×

′× −

∫∫R r

R R R R

r

r

ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ ρ

ρ

where C is the intensity reflection coefficient of
the object, the variables’ indices without primes
correspond to coordinates in the initial beam, and the
primed indices – to coordinates in the receiving
plane. If the matching condition (9) is fulfilled,
expression (25) reduces to

2
b2( , ;– , ) ( , ).R

C
I L l I L

l
=R r R  (26)

It can be seen from relation (26) that the intensity of
the reflected signal fluctuates as the square of the
field intensity at the object and, consequently, when
the maximum of the received signal is reached, then
the intensity at the object also becomes maximal.

2.1. A point object

Let the scattering object be a point and located
at the point (L, 0), and let the initial beam distribution
U0(ρ) be given in the õ = 0 plane. The receiving
aperture of the optical system, described by the
amplitude transmission function À(ρ) and phase shift
S(ρ), is also located in the õ = 0 plane. The intensity
of the received radiation is recorded in the x = –l
plane behind the receiving aperture. It is assumed
that the medium behind the receiving aperture (for
õ < 0) is homogeneous.

The intensity of the radiation incident on the
object, Iobj, can be written in the form

4 *
1,2 0 1 2 1 2îbj d ( , ) (0, ; ,0) (0, ; ,0),I G L G L= ρ Γ∫∫ ρ ρ ρ ρ  (27)

where Γ0(ρ1,ρ2) is the source coherence function;
G(…) is the Green’s function for an inhomogeneous

medium. The radiant intensity at the point (–l, r)
located behind the receiving system can be written in
the form

4 *
1,2 1 2îbj
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*
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ρ

where Â is the effective scattering surface of the
object, G0(0, ρ1; –l, r) is the Green’s function for a
homogeneous medium. For l = const, let IR attain its
maximum at r = rm. As can be seen from Eq. (28),
this takes place when the integral in Eq. (28) reaches
its maximum by r. Comparing Eqs. (27) and (28) at
fulfillment of the condition
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and taking into account the reciprocity principle (6)

0 0 0 0( , ; , ) ( , ; , )G x x G x x=ρ ρ ρ ρ  (30)

it is not difficult to show that if r = rm, then the
radiant intensity at the object Iîbj also reaches its
maximum in comparison with other values of r.
Relation (29) for r = rm gives a selection rule for the
best (in the sense of the maximum of Iîbj) direction
of the beam axis.

If the initial beam field distribution is given to
within the axis tilt (to within terms in the phase,
linear in ρ), then optimal reception is achieved when
the receiving optical system (À(ρ), S(ρ)) is matched
with the beam according to condition (29). Then the
best direction of the beam axis is the direction
corresponding to the maximum of IR(–l, r).

 Analogous considerations can be employed to
obtain the best focusing or, what is the same, to
choose the phase front curvature (the quadratic terms
in the initial phase of the beam). In this case, one must
search for l2Irec(–l, r) maximum over the variables l,
r. If this maximum is reached at lm, rm, then the form,
which the initial coherence function should take, is

2
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For this choice, the focal length and direction of
the beam are optimal. Choosing U0 and Γ0 according

(25)

(28)

(29)

(31)
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to condition (31) actually changes only the linear
and quadratic terms in the beam phase and does not
change the field amplitude, thanks to the factor of l2

before Irec.
Note that in contrast to the case when the source

is a point object, generally speaking, the problem of
finding the optimal time of the pulse emission is
insoluble since the magnitude of Iobj also fluctuates.

2.2. An extended diffuse object

Let a reflecting diffuse extended object has the
intensity reflection coefficient B(r). This means that

1 2
1 2 inc 1 2 1 2ref( , ) ( , ) ( ) ( – ).

2
B

+
Γ = Γ δ

ρ ρ
ρ ρ ρ ρ ρ ρ  (32)

Here, in analogy with Eqs. (27) and (28), we can
write IR(–l, r) in the form
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(0, ; , ) ( ) ( , ;0, ) ( , ;0, )

( ) ( )exp{ [ ( ) – ( )]}

(0, ;– , ) (0, ;– , ).

RI l R G L

G L B G L G L

A A i S S

G l G l

′ ′= ρ ρ Γ ×

′ ′× ×

′ ′× ×

′×

∫∫r R

R R R R

r r

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ ρ

ρ ρ

Assuming that B(r) characterizes the position and
extent of the object and is a binary function (equal
to 1 on the object and 0 off it), we can write an
expression for the power Wîbj of radiation incident
on the object:

2 2 2 2
inc 1 2 0 1 2îbj

*
1 2

d ( ) ( ) d d d ( – )

(0, ; , ) (0, ; , ) ( ).

W RB I R

G L G L B

= = ρ ρ Γ ×

×

∫∫ ∫∫R R

R R R

ρ ρ

ρ ρ

If matching condition (29) is fulfilled, we obtain
from comparing Eqs. (33) and (34)

2
îbj(– , ) ,RI l CW=r (35)

i.e., the intensity at the receiver fluctuates as the
square of the power on the object, and the maxima of
these quantities are attained simultaneously. It is
important that in the given case the condition (29)
cannot be treated as the equation for the best
direction of the beam axis. For some given direction
of the beam axis, the observation point r is uniquely
determined by this direction. In the given case, we
can solve the problem by choosing the optimal time
of emission of the pulse for fixed Γ0(ρ1,ρ2) if
A, S, l, and r are chosen in accordance with Γ0(ρ1,ρ2)
and the pulse is emitted at the moment when the
intensity of the reflected signal at the point (–l, r)
reaches its maximum.

The search for the optimal direction of the beam
axis can be realized by scanning the beam axis over
the angle and simultaneous changing the points at
which the reflected radiation is observed in accordance
with Eq. (27). This process should be sufficiently fast
so that the intensity distribution have not time to
vary while the beam scanning.

The situation with choosing the beam focal length
is analogous. For some problems it is of interest to
maximize the energy at a given point of the receiving
plane (–l, r). In this case, the direction of the beam
axis is chosen in accordance with Eq. (29). Then in
the x = –l plane the point rm is searched for, at which
Iref takes its maximum. If after this we choose
the direction of the beam axis in accordance with
Eq. (29) for r = rm, then, as follows from Eq. (33),
Iref(–l, r) is maximal.

All of the above-enumerated problems are
generalized to the case of a partially coherent beam
with factorable coherence function. In this case,
instead of receiving radiation at a point, it is necessary
to fix the radiation, reflected from some object, at
some area matched with the coherence spectrum of
the  initial  radiation  over  the  difference coordinate.

All these approaches to adaptive correction of
distorted optical beams focused on remote objects
in the atmosphere or behind it, are oriented to the
adaptive optical systems, which use the intensity
analyzers as the wave front sensors. A lot of approaches
is available for searching for maxima for two-
dimensional distributions of physical fields, among
them optical distributions of laser beams propagating
in a stochastically inhomogeneous medium. However,
comparing them with phase sensors of wave front,
for example, Shack–Hartmann sensor or shift
interferometer, it must be noted that the intensity
analyzer, naturally, requires a higher speed of
operation and a very wide dynamical range. In
particular, this is important for optical systems
operating under conditions of “strong” fluctuations of
intensity.

3. Computer modeling
of adaptive systems operating

with reflected signals

To justify the applicability7,8,14,16 of the signal
backscattered from atmospheric inhomogeneities in
order to closing the feedback in adaptive optical
systems, numerical calculations were performed using
the following system of equations:

2 2

ext2 2

2 2
ref

ref2 2

extref ref

2 ( ) 2 ( 1) 2 ,

2 ( )

2 ( 1) 2

E
ik E ik n E ik E

z x y

E
ik E

z x y

ik n E ik E

 ∂ ∂ ∂
= + + − − α ∂ ∂ ∂


∂ ∂ ∂− = + +

∂ ∂ ∂

+ − − α



under boundary conditions for the corrected field

2 2

a c( , , 0, ) ( , ) exp ,
2

x y
E x y z t I x y ik i

f

 + = + τ = + ϕ 
  

(37)

with the correcting phase

c ref{ ( , , 0, )},A E x y z tϕ = = (38)

(33)

(34)

(36)
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and for the reference field

ref( , , , ) ( , , ) ( , , , ).E x y z f t B x y t E x y z f t= = =  (39)

Here τà is the time lag4,7 in the controlling loop of
the adaptive optical system as a whole; A is the
operator of control for the adaptive system
(algorithm); B is the reflectivity from a target or the
Rayleigh coefficient of the backscattering from
atmospheric inhomogeneities.

In the analysis of efficiency of some adaptive
system, numerical models of the adaptive optical
system are used,4 namely:

models of wave front sensors:
a) an ideal phase sensor

c refarg{ ( , , 0, )};E x y z tϕ = =

b) an ideal sensor of phase difference

, 1, 1, , 1 , 1

1, ,, 1 ,

4 – – – –

,

i j i j i j i j i j

x y x y
i j i ji j i j

+ − − +

− −

ϕ ϕ ϕ ϕ ϕ =

= ∆ϕ + ∆ϕ − ∆ϕ − ∆ϕ

i, j = 1, 2, …, N (N is the dimension of the calculation
grid),

*
, 1, ,arg( ),x
i j i j i jE E+∆ = *

, 1 ,, arg( );y
i j i ji j E E+∆ =

c) the Shack–Hartmann sensor

2

2

1
( ) d

1
{Re (Im ) – Im (Re )}d ,

k

k

k
k A

k A

I
P

E E E
P

= ϕ ρ =

= ρ

∫∫

∫∫

g ρ ∇

∇ ∇

where Pk is the power passed through the aperture
Ak; gk is the measured phase gradient;

models of wave front correctors:
a) modal (Zernike) corrector

Z

1

2 ,2 ,
N

k l l
l

x y
a Z

D D=

 ϕ =  
 ∑

D is the aperture diameter;
b) flexible mirror

Z

11

–
,

N
k

k k
l

f
d=

 
ϕ = Φ  

 
∑

ρ ρ 2 2( ) exp(– / ),f w= ρρ

where d1 is the space between neighboring actuators;
w = 0.575; ρk is the position of the subaperture
center; Φk  is the estimate of phase in the center of
kth aperture.

A computer program package has been made,
which allowed us to obtain a sufficiently great
amount of new interesting results justifying the
capability of the adaptive system to successfully
operate with signals backscattered from atmospheric
inhomogeneities.

4. Effect of coherence on parameters
of a laser guide star

One of key elements of an adaptive system’s
optical scheme is a reference source. In this section,
we consider some aspects of using the laser reference
sources connected with the coherence of their
radiation.

Using the results from Refs. 14–16, the following
formula can be written for the variance in the
angular jitter of centroid of the laser beam emitted
vertically upward from the ground:

2
lb

1
2 2 3 2 2 2

0 0

( )

4 d (1– ) d ( , )exp(– /2),nx x a q
∞

< ϕ >=

= π ξ ξ κκ Φ κ ξ κ∫ ∫
where

2 –2 2 1/2 2( ) [ (1– / ) ] , / ;q x f ka xξ = ξ Ω + ξ Ω =  (41)

x is the distance; a is the initial size of the Gaussian
laser beam; f is the curvature radius of the Gaussian
beam phase front. In our calculation, we use in
Eq. (2) the turbulence spectrum of the form16:

{ }2 –11/3 2 2
0( , ) 0.033 ( ) 1– exp[– / ] ,n nx C xΦ κ ξ = ξ κ κ κ  (42)

taking into account a deviation from the Kolmogorov
spectrum in the range of large scales of inhomogeneities

of the refractive index of the atmosphere; –1
0κ  is the

turbulence outer scale.
As a result, we obtain for a focused beam from

Eq. (40)

1
2 2 –1/3 2

lb 5/6
0

–1/3 2 –1/6 2
2 2

0

(1/6)
( ) 4 0.033 d (1– )

2

2
{(1– ) – [(1 ) ] } ( )n

x a

C x
a

Γ
< ϕ >= π ξ ξ ×

× ξ − ξ + ξ
κ

∫

and under the condition –1
0κ >>a, we have for the

collimated beam10–13:

2
lb

1
2 –1/3 2 2

5/6
0

( )

(1/6)
4 0.033 d (1– ) ( ).

2
nx a C x

< ϕ >=

Γ
= π ξ ξ ξ∫

The next step will be the calculation of the
variance of the jitter of a secondary source image,
i.e., a scattering volume illuminated from the ground
(or the image of some laser reference source) in the
focal plane of the objective. Since the light scattering
by atmospheric inhomogeneities (molecular scattering,
aerosol scattering, and stimulated emission at free
atoms) is the process of light scattering by independent
scatterers, then the resulting wave field will be fully
incoherent.17

 The size of the illuminated zone within the
scattering layer is calculated based on conclusions of

(40)

(43)

(44)
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the theory of light propagation in a turbulent medium.
In a series of works,14–16 the distribution of the mean
intensity of the Gaussian beam having passed through
a layer of turbulent medium has been calculated as:

2
2 2

eff2
eff

( , ) exp(– / ),
( )

a
I R a

a
< ξ >=

ξ
R

where

2 2 2 –2 –2 6/5
Seff( ) {(1– / ) [1/2 (2 )] }a a f D aξ = ξ + Ω + Ω

is the effective size of the beam in a scattering medium;
DS(2a) is the phase structural function.

Further we will use the deductions of the
coherence theory.15–17 The van Cittert–Zernike theorem
deals with propagation of the mutual coherence
function of a field

*
1 2

1 2
1 2

( , ) ( , )
( ; , )

( , ) ( , )

U x U x
x

I x I x

< >
γ =r r

ρ ρ

ρ ρ

and quantitatively describes the effect of diffraction
of the incoherent light at its propagation from some
laser guide star (LGS) to the Earth. The modulus of
complex degree of the coherence for an initially
incoherent source after passing trough homogeneous
layer with depth x is given by following formula:

2
1 2

1 2 2

d ( )exp(– ( – )/ )
( ; , ) .

d ( )

sI ik x
x

sI
γ = ∫∫

∫
s s r r

r r
s

 (45)

Thus, the van Cittert–Zernike theorem gives that the
modulus of the complex degree of the coherence for
an initially incoherent source of a small angular size
is equal to the modulus of the normalized Fourier
transform for distribution of field intensity on a
source. Thus, for a circular incoherent homogeneously
lighted source of d size in the initial plane, the
modulus of the complex degree of coherence at the
distance x is

1
1 2

2 ( /2)
( ; , ) ,

( /2)
J k r

x
k r

α
γ =

α
r r (46)

ãäå α = d/x is the angular size of the source as seen
from the distance x; 1 2– .r = r r  As a result, the

radiation spatial coherence radius ρc ≈ 1.22λx/d.
Naturally, these estimates are obtained for the case of
radiation propagation in a homogeneous medium.

For the complex degree of coherence

2
1/2

2 2

( , )
( , ) ,

[ ( /2, 0) ( – /2, 0)]
Γ

γ =
Γ + Γ

R
R

R R
ρ

ρ
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 (47)

where
*

2( , ) ( , ) ( , ) ;U UΓ =< >R R Rρ ρ ρ

1 2( )/2;= +R ρ ρ 1 2( – ),=ρ ρ ρ

the following equation was derived14:
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i k
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ρ
∂Γ
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π
+ Γ =

R
R
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with the boundary conditions for a deterministic
initial field

*
2 0 0( , ) ( /2) ( /2).U UΓ = + −R R Rρ ρ ρ

The function ( , )H x ρ in Eq. (48) characterizes
statistical properties of fluctuations of the dielectric
permittivity

2( , ) 8 ( , )[1– cos ]d .nH x x
+∞ +∞

−∞−∞

= Φ κ∫ ∫ρ κ κρ  (49)

If the initial field U0 fluctuates, then the
function 0 *

2 0 0( , ) ( /2) ( – /2)U UΓ = +R R R= ?ρ ρ ρ must
be used as the boundary condition, where the double
angle brackets point to averaging over the ensemble
of realizations of the source.

As an example, present a boundary condition for
a partly coherent light beam, the field of which is

( )0( ) ( )exp ( ) ,U A i= ϕρ ρ ρ

where ( )ϕ ρ  is a random phase with a zero mean and,
for example, the Gaussian distribution.

Let the initial beam be Gaussian:

2 2 2
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where
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For simplicity
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R
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Here ak is the radius of the initial spatial coherence
of the radiation source. In a random medium14–16:
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Consider the limiting case in Eq. (52), i.e.,
transition to a fully incoherent initial (thermal)
source: then ak → 0 and

0 2 2 2 2
2 0( , ) 4 exp{ / } ( ).kU a R aΓ = π − δR ρ ρ

Note that this formula is a special case of general
relationship for the coherence function of a thermal
source. In the general case, if ak → 0, then 0

2( , )Γ R ρ
can be approximated by

0 2
2( , ) ( ) ( ).b IΓ = δR Rρ ρ (53)

It turns out in this case that / 2b = λ π , i.e., the
coherence radius of the thermal source is comparable
with the wavelength.

At the distance x in the turbulent medium
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44
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For modulus of the complex degree of coherence
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 ρ π ′ ′ ′γ = − 
  

∫R ρ ρ  (55)

It is seen16,17 that there are two opposite tendencies
in variation of the spatial coherence radius of the
initially incoherent radiation. On the one hand, it
grows proportionally to d0 = 2x/ka (due to decrease
of the visible angular size γs = a/x of the source),
and on the other hand, it decreases because of the
loss of coherence in the turbulent medium.

We can estimate the modulus of the complex
degree of coherence through the phase structural
function and obtain

2 2 2 2

S 2
0

( , ) ( , / )d .
22

x
k a k

D x H x x x x
x

ρ π ′ ′ ′= + ∫ρ ρ  (56)

Calculations by formula (56) with the Karman
turbulence spectrum result (under the condition

1
0
−κ  >>ρ) in

S( , )D x =ρ
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For a wide 2( / 1)ka xΩ = ?  collimated beam
the variance of the centroid jitter can be written as
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 (58)

For a collimated wide beam, the variance of the
image angular jitter is
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in this case, the secondary source size is a. For the
focused beam the secondary source size is a/Ω; and
as a result18–21:
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∫ (60)

where D is the diameter of the receiving objective; a
is the size of the laser Gaussian beam forming the
laser guide star.

Once again return to the formula for the structural
function. If to assume a square approximation in the
second term, then the coherence radius of the initial
incoherent source in the turbulent medium is16:

0
coh 2 2

0 t

( )
,

(1 ( )/ )
d x
d x

ρ =
+ ρ

(61)

where ρt is the coherence radius for a spherical wave
in the turbulent medium.15.16

Application of laser guide stars to correction of
images of the off-atmospheric objects faces a series of
serious problems.5–8,10–13,20 One of them is connected
with impossibility to provide for efficient correction
of the total wavefront tilt (TWFT). The correction of
TWFT fluctuations for a natural star with the help
of only LGS signal is known to be inefficient.8,10–13

The tradition monostatic scheme, which uses only the
aperture of the telescope itself (main), is inefficient
even with the use of procedure of LGS signal
optimization.11

In this connection, some investigators declare
the need to use simultaneously both LGS and natural
stars for the TWFT correction. Since the angle of
spatial correlation for TWFT fluctuations significantly
exceeds the isoplanatism angle for higher aberrations
of phase fluctuations of the optical wave having passed
through the turbulent atmospheric layer, a sufficiently
remote star can be used for TWFT correction.

One more disadvantage of LGS application to
image correction in the ground-based telescopes is
the cone effect or focal nonisoplanatism. The authors
of Ref. 22 propose to use more than one star to
eliminate this effect. They have shown that high
coherence of the laser radiation in the guide star can
be achieved only if the visible star image is small
enough. Therefore, almost all LGSs were formed
based on the focused laser beams.

The coherence of the received radiation is always
determined by two factors: the size of the LGS

(54)
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visible area from the measured telescope focus and
the coherence of spherical wave, because the LGS
initial emission is practically incoherent.

Recently, the use of wide collimated beams for
formation of LGS was reported.23 It was assumed
that the resulting guide star has a plane wave front
providing for elimination of the focal nonisoplanatism.
However, it was ignored that the secondary source –
guide star – has a significantly low spatial coherence
because of incoherence of the process of light
scattering by atmospheric inhomogeneities (molecular
and aerosol scattering, re-emission of radiation at free
atoms in the upper atmosphere), and the coherence
radius of the scattered radiation ρcoh turns out to be

2 2

2 2 2
tcoh

1 1
.

4
k a
x

= +
ρ ρ

The coherence of the secondary radiation is always
lower in a wide collimated beam than in a focused
beam, and the above relation can be rewritten as

2 2

2 2
tcoh

1 1
,

4
k ϕ

= +
ρ ρ

ãäå ϕ = à/õ is the visible area of the secondary
source or its part. If the secondary source is “resolved”
by the receiving aperture, i.e., it is possible to observe
some its parts or fragments separately, then the angle
ϕ must be replaced by the atmospheric angular
resolution of the telescope.

If it is taken into account that the angular
resolution of the atmosphere–telescope system (without
adaptive correction) is expressed through the ratio
λ/r0, where r0 is the coherence radius of radiation for
a plane wave having passed through the entire
atmosphere, then within the telescope field of view it
is possible to separately observe fractions of λ/r0

angular size of the laser-illuminated surface of the
incoherently luminous LGS. As a result, the first
term characterizing the LGS radiation coherence
(calculated for vacuum) will be equal to

coh / ,ρ = λ θ (62)

where θ is the angular resolution of the telescope in
the atmosphere, i.e., θ = λ/r0, and ρcoh = r0/π.

In the case of a wide focused beam (when the
LGS spot cannot be resolved by the telescope) we
can obtain the radiation from the secondary source
with the coherence radius of the size of the aperture
focusing the laser radiation. Naturally, the estimate
is for a homogeneous atmosphere. For conditions of
the turbulent atmosphere, the coherence radius of the
secondary source can be calculated by Eq. (61).

However, in some cases, it should be believed
that we deal with incoherent guide stars. Incoherent
LGS also can be used efficiently, for example, for
real-time measurements of the atmospheric optical
transfer function along the path. This function can be
used in the inverse convolution algorithm for post-
detector image correction.

Certainly, this approach allows obtaining more
efficient correction as compared to a “blind” inverse

convolution, which assumes calculation of the
atmospheric transfer function based on some
atmospheric model. Besides, the guide star can be
formed almost in any required direction, for example,
when forming the image of some extraterrestrial
object in the telescope. One of restrictions on
efficient application of such a star is the problem of
focal nonisoplanatism because of the LGS location at
some finite distance in the atmosphere, while the
object is always far beyond the atmosphere. Therefore,
the object and the LGS are always seen in different
planes, because they have wave fronts with different
curvatures. This, in its turn, causes different
fluctuations for waves coming to the objective from
the object and from the reference source.

As is known, any adaptive system has a finite
frequency band, which causes a lag between the
received and control signals. Therefore, there exist
some limitations on the quality of correction of a
moving object. At the same time, when forming LGS
in some given direction, it is possible to partly
compensate the time lag arising in any adaptive
system and connected both with evolution of random
inhomogeneities in the channel and the fast change of
the position of the object under study. In this case,
the LGS is formed in the position, which “predicts”
the future position of the object.
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