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Theoretical investigation of thermal blooming of a horizontally propagating 
optical beam with a self–induced gravitational convection is carried out using 
numerical simulations. The thermal conductivity and viscosity of a gas are taken into 
account. The results are compared with the analogous experimental data. 

 

The process of radiation propagation through the resting 
medium (or at the segments of relative rest, i.e., in the 
"immobile" zones) within the time interval 
tc = (ρ0 h0 a/q0 g)1/3 causes the natural gravitational 

convection with a characteristic velocity 
Vc=(q0 a g/ρ0 h0)

1/3=a/tc (see Refs. 1 and 2). Here ρ0 is the 

density and h0 is the enthalpy of unperturbed medium, a is the 

typical transverse size of a beam, g is the acceleration due to 
gravity, q0 = αI0 is the typical power per the unit volume, α is 

the absorption coefficient and I0 is the typical radiation 

intensity. 
At the relatively small fluctuations in hydrodynamical 

parameters, the gravitational convection is described by the 
nonlinear system of Boussinesq's equations on the basis of 
which the classification of regimes of thermal blooming in 
gases and liquids was proposed.3,4 In gas media and in some 
widespread liquids (for example, in water) where the Prandle 
number Pr = μ0Cp0/k0 (here μ0 is the coefficient of dynamic 

viscosity, k0 is the coefficient of thermal conductivity, and 

Cp0 is a specific heat of medium) is the quantity of an order of 

unity, there the effects of thermal conductivity and viscosity 
manifest themselves under the same conditions. 

Let us relate the density ρ to ρ0, pressure p to the initial 

value p0, temperature T to the corresponding value in 

unperturbed medium T0, heat to Cp0
, thermal conductivity 

coefficient to k0, dynamic viscosity coefficient to μ0, transverse 

coordinates x, y to the beam radius a, the time t to tc, and 

velocity components U, V – to Vc. Let us direct the z axis 

along the beam path while the y axis –– opposite to the 
vector of gravitational field intensity g = –eyg (where ey is 

the unit vector along the y axis). By expanding the 
hydrodynamic parameters into the series over the small 
parameter ε = q0 a/(ρ0 h0 Vc) = q0/(ρ0 h0)

2/3(a/g)1/3, we 

will obtain the following system of dimensionless equations for 
the main terms of fluctuated quantities: 

 

ρ = 1 + ε ρ1 + ... ; T = 1 + ε T1 + ... ; 
 

p = 1 + Eu (– y/Fr + (ε/Fr) p1 + ...) ; Eu/Fr � 1 ; 
 

div V = 0 ;  (1.1) 
 

dV
dt  = – ∇p1 + ey ρ1 + 

1
Re ΔV ; 

d
dt = 

∂
∂t + (V, ∇) ;  (1.2) 

 

dρ1

dt  = – I(x, y, z, t) + 
1
Pe Δ ρ1 ;  (1.3) 

T1 = – ρ1 .  (1.4) 

 

Here Eu = ρ0 Vc
2/p0 is the Euler number, Fr = Vc

2/ag is the 

Froude number, Re = ρ0 aVc/μ0 is the Reynolds number, and 

Pe = ρ0 a Vc/k0 Cp0 = Pr Re is the Peclet number. In 

approximation of paraxial beams, for which a/L � 1 (L is the 

typical path length), the coordinate z enters system (1) as the 
parameter, since the changes in the hydrodynamic quantities 
along the z axis on a scale of transverse size a can be 
neglected. In the case Pe, Re < 1 the thermal conductivity and 
viscosity predominate, while gravitational convection cannot 

virtually be observed. At Pe, Re � 1 the viscosity and thermal 

conductivity of a gas can be neglected. Such a case of strong 
gravitational convection was discussed in Ref. 5. At 
Pe, Re ∼ 1 there occurs a heat–conducting mode of 
gravitational convection or heat–conducting convective mode. 
In this paper, the solution, including two above cases 
(Pe, Re > 1) is obtained. Owing to absence of perturbations at 
the initial instant of time, the following conditions must hold: 

 

ρ1⏐t=0 =0 ; p1⏐t=0 =0 ; V1⏐t=0 =0 ; T1⏐t=0 =0 ; (2) 
 

We introduce the vorticity function Ω = rot V and 
function of flow ψ: U = ∂ψ/∂y and V = – ∂ψ/∂y. The system 
of equations (1) can be written in the following standard 
form, convenient for integration6,7: 

 

∂A
∂t  + 

∂B
∂x + 

∂C
∂y  = H ; (3) 

 

ω = – Δψ  (4) 
 

A = ⎝
⎛

⎠
⎞ω

ρ1
 ;   B = 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞ω 

∂ψ
∂y   – 

1
Re 

∂ψ
∂x

ρ1

∂ψ
∂y   – 

1
Pe 

∂ρ1

∂x

 ;  

 

C = 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞– ω 

∂ψ
∂x   – 

1
Re 

∂ω
∂y

– ρ1

∂ψ
∂x  – 

1
Pe 

∂ρ1

∂y

 ;   H = 
⎝
⎜
⎛

⎠
⎟
⎞ – 

∂ρ1

∂x
 – I

 . (5) 

 

At the boundary of calculational zone, in the case of the 
solid surface, the conditions of nonflowing and adhesion must 
be satisfied 
 

∂ψ
∂x

y=±Ly/2

 = 
∂ψ
∂y

x=±Lx/2

 = 0 ;  (6) 
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∂ψ
∂x

x=±Lx/2

 = 
∂ψ
∂y

y=±Ly/2

 = 0 . (7) 

 
In open space, assuming that dimensions of 

calculational zone Lx, Ly are great enough in comparison 

with a, it will be necessary for "soft" boundary–value 
conditions defined for the function of flow ψ to be satisfied 

 

∂ψ
∂y

y=±Ly/2

 = 
∂ψ
∂x

x=±Lx/2

 = 0 . (8) 

 
At the initial instant of time, the following conditions 

must hold 
 

ρ1⏐t=0 = 0 ; ω⏐t=0 = 0 ; ψ⏐t=0 = 0 . (9) 

 
In approximation of paraxial optics the beam 

propagation is described by a dimensionless equation for the 
complex function of electromagnetic field u with the 
boundary–value conditions: 

 

–2 i F 
∂u
∂z + Δ

⊥
u + (2 F2N ρ1 – i N

α
 F) u = 0 ; (10) 

 
u⏐z=0 = u0(x, y); u⏐x,y→±∞

 = 0 . (11) 

 
The field function u is related to the radiation 

intensity via the equation I = uu*; the Fresnel number is 
equal to F = 2 π a2/(λ L), where λ is the radiation 
wavelength; the absorption parameter N

α
 = αL; the 

parameter of thermal blooming N = (L/zT)
2, where 

zT = α/ ε(n0 – 1)/n0 is the typical length of thermal 

blooming. The initial function u0 for the collimated 

Gaussian beam is equal to u0(x, y) = exp[– (x2 + y2)/2] 

while for the circular beam – to 

u0(x, y) = [exp(–r 2) –exp(–A 2r 2)]/(1–1/A 2); r = x2 + y2,  

where A = a/a1, a1 is the internal radius of a circle. 

One of the first algorithms for numerical simulation of 
the system of Eqs. (3)–(5) and (10) was proposed in Ref. 7. 
Numerical solution of this problem, in thin–lens 
approximation8 was compared with performed earlier 
fundamental experimental investigation of thermal blooming 
under conditions of gravitational convection.9 In Ref. 10 the 
nonstationary solution of equations of gravitational convection 
as applied to the beam in a cell was obtained. Stationary 
(steady) thermal blooming under conditions of gravitational 
convection was discussed in Ref. 11. Hydrodynamics equations 
were solved by the setting method while the paraxial 
equations – by the three–layered conservative finite–
difference scheme of the second order of approximation. The 
unsteady regime of thermal blooming has been numerically 
investigated in Ref. 12. The Boussinesq's equations were 
solved by the explicit two–steps finite–difference Lax–
Wendroff scheme. In this paper equations (10) were solved 
based on the expansion in the discrete Fourier series using the 
Fourier fast transform.13 The finite–difference scheme14 of the 
second order of approximation was applied to equations (3) 
and (5) 

 

A
∼
ij=An

ij –
Δ t
Δ x (B ni+1, j –B ni, j) –

Δ t
Δ y (C ni,j+1–C ni, j)+Δ t H ni, j;(12) 

An+1
ij  = 

1
2 (An

ij+A
~
ij–

Δ t
Δ x (B

∼
ij–B

∼
i–1,j)– 

– 
Δ t
Δ y(C

∼
ij – C

∼
i,j–1) + Δ t H

∼
ij) . (13) 

 

Peculiar feature of the problem of thermal blooming is 
in the fact that it is necessary to know exactly the fields of 
density fluctuations within the radiation–occupied region 
while the region of fluctuation in hydrodynamic quantities 
exceeds considerably the dimensions of heat–release zone. A 
simple approach to setting of "soft" boundary–value 
conditions of type (8) at the extremely close distance from 
the beam allows one to reduce considerably the 
calculational time expended in the tasks of thermal 
blooming for open space, or, for cell walls far removed from 
the beam. The analysis shows that in the wide range of 
similarity parameters N, F, Pe and others the boundary–
value conditions can be changed and prescribed at the 
distance of three–four transverse dimensions of the heat–
release zone within error of less than 1%. Analogous 
approach to the change of boundary–value conditions for 
the pressure fluctuations (velocity and gas density) was used 
in Ref. 15 to construct the solution of the problem of 
thermal blooming of pulsed radiation in the homogeneous 
gas flow of high rate. 

Let us go on to discuss the results. We consider a 
circular beam with A = 3. Figure 1 shows the isochores (at 
the left, ρ1 = 0.1, 0.5, 0.9 ρ1min) and lines of identical 

values of the vertical component of rate (at the right 
V = 0.9, 0.5, 0.1 Vmin, 0.01, 0.5, and 0.9 Vmax) for the 

closed volume (Fig. 1a) and for open space (Fig. 1b) at the 
instants of time, when the fields of hydrodynamic quantities 
are close to stationary or quasistationary ones. The 
dimensions of calculational zone in terms of physical 
variables are Lx, Ly = 6.4 a. For the case of open space, it 

is found that the further increase of dimensions (for 
example, by a factor of two) does not result in noticeable 
change in perturbation of hydrodynamical parameters. The 
Peclet and Reynolds numbers are large: Pe = 42 and 
Re = 56. 

 

 
 

FIG. 1. Isochores (at the left) and isotaches (at the 
right) for the vertical component of the rate of 
gravitational convection caused by the horizontally 
propagating circular beam (A = 3): in the close volume 
Lx = 6.4a = Ly, t = 5tc (a) and in open space, t = 4tc, 

Pe = 42, and Re = 56 (b). 
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The selected initial distribution of intensity is 
characterized by large gradients over transverse coordinates. 
Therefore, density perturbations can strongly differ one 
from another even at the large but different Peclet and 
Reynolds numbers. Figure 2 shows the density perturbations 
at the center of a beam ρ1(0, 0, t) as a function of time. 

Perturbations reach the maximum first in open space 
(curve 1) at t = 2.2 tc, then in a wider tube (curve 2) at 

t = 2.4 tc, and finally in a narrow tube (curve 3) at 

t = 2.8 tc. The increase in the Peclet and Reynolds numbers 

by about an order of magnitude (compare curves 2 and 4) 
leads to a slight increase in maximum itself of perturbation 
of the function ρ1 and in its time of achieving t = 2.6 tc. 

However before this instant of time, as comparison of 
curves 2 and 4 shows, the neglected viscosity and thermal 
conductivity for variant 2 result in the 100% error in 
determining the density perturbations. The error of the same 
order occurs also for density perturbation gradients by 
which the local angles of beam deviation and hence 
intensity redistribution along the beam path can be found. 
The values of the function ρ1 differ one from another by 

10% at Pe = 113 and 244, i.e., the error in neglecting of 
viscosity and thermal conductivity can be considerably less. 

Table I shows the temporal and spatial dependences of 
intensity peaks Im = max

x,y
 [I(x, y, z, t)], mean radius 

rm = ⌡⌠ ⌡⌠ (x2 + (y – Δy)2)Idxdy/W, and displacements of 

the center of gravity of intensity distribution  

Δy = ⌡⌠ ⌡⌠ yIdxdy/W, where W = ⌡⌠ ⌡⌠ Idxdy is the total 

power of a beam with account of and without account of 
viscosity and thermal conductivity at the following values of 
similarity parameters: F = 10; N = 1; N

α
 = 0.1, Pe = 10, 

Re = 13.2. The initial distribution of intensity over a beam is 
circular, A = 3. A comparison of results shows that the neglect 
of thermal conductivity results in an error in calculations of 
local parameters up to 138% (t/tc = 2; z/zT = 0.4). An error 

in calculation of relative displacement Δy/a reaches 84% 
(t/tc = 2, z/zT = 0.6). Neglected thermal conductivity and 

viscosity affect slightly the quantity of the mean beam radius, 
the error achieves only 5.6% (t/tc = 7; z/zT = 1). 

 

 
 

FIG. 2. Temporal dependence of density perturbation at the 
center of circular beam (A = 3): in open space, Pe = 42, 
Re = 56 (1), in the horizontal tube, Lx = 6.4a = Ly, 

Pe = 42, Re = 56 (2), in more narrow tube, Lx = 6.4a = Ly, 

Pe = 42, Re = 56 (3), in less thermal conducting and viscous 
gas, Lx = 6.4a = Ly, Pe = 244, Re = 343 (4).  

 
 

TABLE I. Effect of the account of thermal conductivity 
(Pe = 10) and viscosity (Re = 13.2) for the circular beam 
(A = 3) on the intensity peak Im/I0 , mean radius of a beam 

rc/a, and displacement of the center of gravity Δy/a. 
 

t/tc (z/zT = 1) 1 2 3 5 7 

Im/I0

Pe = ∞ 
Pe = 10 

0.588 
0.714 

0.615 
0.573 

1.08 
0.605 

0.589 
0.630 

 0.610 
 0.603 

rc/a
∞ 
10 

1.26  
1.24  

1.42 
1.36 

1.33 
1.32 

1.265 
1.22  

1.32 
1.25 

Δy/a
∞ 
10 

– 0.0095
– 0.0065

– 0.119 
– 0.071 

– 0.273  
– 0.203  

– 0.107 
– 0.140 

– 0.149
– 0.119

z/zT (t/tc = 2) 0.2 0.4 0.6 0.8 1 

Im/I0

∞ 
10 

0.843 
0.722 

1.50  
0.631 

1.33  
0.733 

1.04  
0.691 

 0.615 
 0.573 

rc/a
∞ 
10 

1.07  
1.07  

1.11 
1.11 

1.19 
1.17 

1.29  
1.25  

1.42 
1.36 

Δy/a
∞ 
10 

– 0.006 
– 0.0036

– 0.217 
– 0.0135 

– 0.0461 
– 0.0285 

– 0.0792
– 0.0478

– 0.119
– 0.071

 

Thus, even at large values of the Peclet and Reynolds 
numbers, being equal to ∼101, the neglected viscosity and 
thermal conductivity can result in the considerable error in 
determining the fluctuating parameters of the beam, in 
particular, maximum intensity along the path. 

The error in neglect of viscosity and thermal conductivity 
at Pe, Re > 101 is considerably less for relatively smooth 
dome–shaped distributions, for example, Gaussian 
distribution. In the laboratory experimental investigations of 
propagation and thermal blooming of laser beams, at small 
transverse dimensions of a beam ∼10–3 and moderately low 
powers ∼10 W, the Peclet and Reynolds numbers are of an 
order of unity. In addition, it is also necessary to account for 
dissipative processes in a gas. 

Let us consider thermal blooming of Gaussian beam, 
under conditions identical to the experimental ones.9  The 
experiments were carried out in the gas cell in the form of 
metallic tube with the end windows made of NaCl, being 
transparent for CO2–laser radiation (λ = 10.6 μm). The tube 

length is L = 1.5 m, beam radius is a = 0.003 m, and tube 
radius is R = 2.85⋅10–2 m. Since the cross section size of the 
tube is larger than that of the beam by an order of magnitude, 
the calculations were carried out according to the algorithm 
for open space. Absorption coefficient α was varied by 
addition of small amounts of propane–butane gas mixture to 
nitrogen (working gas in the cell), the density ρ0 and 

refractive index n0 were varied by the change in pressure from 

1 to 10 atm. The power of a beam was equal to 7–9 W. Thus, 
the experiment conditions made it possible to vary 
independently the absorption parameter N

α
 and thermal 

blooming parameter N. The Fresnel number was equal to 3.56. 
The experimental and calculational isophotes are shown 

in Fig. 3. The lines are plotted for similar intensities I = 0.2; 
e–1; 0.5Im within the limit of stationary state of thermal 

blooming. In Fig. 3a isophotes correspond to the absorption 
coefficient α = 0.13 m–1, power W0 = 1.2 W, and pressure 

p0 = 1 atm. The characteristic time of convection is 

tc = 0.270 s, Vc = 0.0111 m/s, N
α
 = 0.195, N = 0.316, 

Pe = 1.61, Re = 2.15, and the scale of density perturbation is 
ε = 0.0421. Under standard conditions unchanged refractive 
index is taken to be equal to n0 = 1 + 3⋅10–4 in nitrogen. For 

isophotes in Fig. 3b α = 0.22 m–1, W0 = 2.2 W, and  
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p = 2 atm. The following values: tc = 0.24 s, 

Vc = 0.0125 m/s, N
α
 = 0.330, N = 0.794, Pe = 3.61, 

Re = 4.83, and ε = 0.0529 correspond to the above conditions. 
Isophotes in Fig. 3c are plotted for the values: α = 0.66 m–1, 
W0 = 4.4 W, p0 = 5 atm, tc = 0.174 s, Vc = 0.0172 m/s, 

N
α
 = 0.99, N = 3.79, Pe = 12.5, Re = 16.7, and ε = 0.101. 

Prandtl number for nitrogen is equal to 0.72.  
The last variant of isophotes (Fig. 3c) should be assigned 

to mode of developed (or pure) gravitational convection 

(Pe, Re � 1), variant 3b – to thermal conducting convective 

mode, and variant 3a is close to merely thermal conductive 
mode in which heat release is negligibly small due to 
convection. Let us note that as follows from the structure of 
analytical solutions of thermal conductivity equation, the 
relationship between the convective and thermal conductive 
modes of heat release is characterized by the parameter Pe/4, 
for variant 3a it is less than unity. The contours plotted for 
similar intensity from numerical calculations agree quite well 
with experimental ones, at least for variants 3b and 3c. There 
are some quantitative differences in the value of displacement 
of intensity peak and of more upward prolonged "wings" of 
half moon (in experimental result). 

 

 
 

FIG. 3. A comparison of theoretical (at the left) and 
experimental (at the right) isophotes of steady thermal 
blooming of Gaussian beam: (a) N = 0.316, N

α
 = 0.195, 

Pe = 1.61, α = 0.13 m–1, W0 = 1.2 W; (b) N = 0.794, 

N
α
 = 0.330, Pe = 3.61, α = 0.22 m–1, W0 = 2.2 W; and, 

(c) N = 3.79, N
α
 = 0.99, Pe = 12.5, α = 0.66 m–1, 

W0 = 4.4 W,  

 
Nonstationary thermal blooming in the experiment9 was 

studied for the case: α = 0.16 m–1, W0 = 9 W, and 

p0 = 2 atm. The similarity parameters N
α
 = 0.24, N = 1.75, 

Pe = 5.36, Re = 7.17, and following typical gas–dynamical 
values: tc = 0.162 s, Vc = 0.0185 m/s, and the scale of 

density perturbation ε = 0.0117 correspond to the above case. 
The temporal dependences of intensity peaks Im/I0 (at 

the top) are shown in Fig. 4a and in Fig. 4b are depicted the 
values of its displacement Δym caused by thermal blooming: 

the experimental curves (1), theoretical (calculational) (2), 
calculation using variant from Fig. 3c (3), and calculation 
using variant from Fig. 3b (4). Considered theoretical 
(curve 2) and experimental (curve 1) temporal dependences, 
obtained under the similar conditions agree well qualitatively.  

The values of intensity peak at the minima are close and equal 
to (Im/I0)1 = 0.30 and (Im/I0)2 = 0.26. The instants of time, 

at which maximum displacement Δym of the peak takes place 

are also close: (tmax)1 = 0.4 and (tmax)2 = 0.35 s. But the 

value of displacement Δym is greater by a factor of about 1.5 

in the experiment, the same is in Fig. 3b. The time for 
achieving the minimum value of intensity peak is shorter by a 
factor of more than two in the experiment. 

The conditions of performing the experiment are not 
completely identical to calculation conditions that results in 
quantitative differences. A comparison of experimental and 
calculational isophotes in Fig. 3 shows that gravitational 
convection and thermal blooming are stronger pronounced in 
the experiment. In calculations the wavefront of a beam at the 
input to the cell was taken to be plane. In experiments, 
possibly, there occurred weak additional focusing that resulted 
in amplification of thermal blooming. Experimental spatial 
distribution of intensity was measured in series of consequent 
startings between which the detector with small diagram 
changed its positions. In so doing at the subsequent startings 
there were, perhaps, nonzero values of flow rate or 
temperature gradients (density) of gas in a tube filled with 
nitrogen that resulted in faster development of convection and 
partial enhancing of the effect. There is one more possible 
reason of distinctions, the influence of which one can evaluate. 

 

 
 

FIG. 4. Temporal dependences of the intensity peak Im/I0 

(a) and its displacement Δy/α (b). Experimental 
dependence at N = 1.75, N

α
 = 0.24, Pe = 5.36 (1), 

theoretical calculation (2), calculation from the variant in 
Fig. 3c (3), and variant from Fig. 3b (4). 
 

As is shown at the optical arrangement (Fig. 1, Ref. 9), 
the beam at the cell exit passes a certain distance l (with two 
rotatable mirrors) before it arrives at the diagram of detector. 
At the exit of the cell filled with nitrogen not only intensity 
but the phase of radiation appear to be perturbed, therefore 
the beam acquires additional divergence angle16  

 

θ ∼ 
a
L B1(L) = 

a
L N ⌡⌠

0

1

 
 (exp(– N

α
z)2/3 dz =  

 

= 
3
2 

a
L 

N
N

α

 (1 – exp(– 2N
α
/3)) . 

 
At the distance l to the diaphragm the additional 

broadening of a beam for a length of Δr ∼ θl occurs. 
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Let us consider the results in Fig. 3c according to 
which the theoretically and experimentally determined 
displacements of intensity peaks differ in δy = 3mm. 
Equating this difference to additional broadening Δr we 
obtain the distance l = 0.54 m. Thus, for experiment 
conditions from variant shown in Fig. 4 at N = 1.75 and 
N

α
 = 0.24 (curve 1) we obtain that additional 

displacement Δr and hence the difference δy must be 
equal to 1.75 mm. Difference in the displacement value 
Δym on curves 1 and 2 (Fig. 4) is close to this value and 

equal to 2 mm. 
Thus, a fair agreement between theoretically and 

experimentally obtained isophotes is revealed as well as 
between temporal dependences of intensity peaks and 
values of its displacements towards the flow of self–
induced convection. 
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