Vol. 2, issue 07, article # 5

pdf Derbov V. L., Ponomarev Yu. N., Potapov S. K. Application of the Fourier-Bessel transformation for the numerical solution of the equations of nonlinear optics. // Atmospheric and oceanic optics. 1989. V. 2. No. 07. P. 587.
Copy the reference to clipboard

An improved scheme of fast Fourier-Bessel transformation is suggested for solving the radial-symmetrically-symmetric wave equation describing the nonlinear propagation of light. The calculations are made of the transmission of an intense light beam in a transparent medium with cubic nonlinearity.


1. V.M. Volkov and V.V. Drits, Differential Methods of Solving Some Problems in Nonlinear Optics. Institute of Mathematics of the Academy of Sciences of the USSR, No. 31/301, 23 (1987).
2. A.A. Afanasiev, V.M. Volkov, V.V. Drits, and B.A. Samson, Numerical Method of Calculating the Two-Wave Interaction of Light Pulses Accompaning their Propagation through Nonlinear Media, Institute of Mathematics of the Academy of Sciences of the USSR, No. 28/298, 22 (1987).
3. A.F. Siegman, Opt. Letters., 1, No. 1, 13 (1977).
4. C. Bardin et al., Proc. Soc. Photo-Opt. Instrum. Eng., 540, 581 (1985).
5. V.A. Vysloukh and T.A. Matveeva, Izv. Vyssh. Uchebn. Zaved, Ser. Radiofiz., 28, No. 1, 101 (1985).
6. A.B. Igumnov, A.S. Solov’ev, and N.N. Yanenko, Numerical Investigation of Wave Phenomena in Nonlinear Media with Dispersion, Preprint Institute of Theoretical and Applied Mechanics of Siberian Branch of Academy of Sciences of the USSR, No. 25–83), 15 (1983).
7. G. Bateman and A. Erdeyn, Higher Transcendental Functions (Moscow, Nauka, 1966).