Vol. 26, issue 12, article # 9

Zuev V. V., Zueva N. E., Saveljeva E. S. Volcanogenic intensification factor of the stratosphere–troposphere exchange. // Optika Atmosfery i Okeana. 2013. V. 26. No. 12. P. 1068–1072 [in Russian].
Copy the reference to clipboard
Abstract:

The mechanism of the volcanic aerosol transport to the stratosphere after Plinian eruptions, when the maximum height of the emission does not exceed the height of the tropopause, is proposed in the paper. NOAA HYSPLIT trajectory model and open global temperature data were applied to show the role of the volcanic ash and gas clouds in the temperature change of the upper troposphere and lower stratosphere, as well as in the tropopause destruction, and therefore, in the intensification of the stratosphere–troposphere exchange. It is found out that the abnormal increase in ground-level ozone concentrations is recorded with the passage of volcanic clouds.

Keywords:

volcanic eruptions, ash and gas clouds, black carbon, the tropopause destruction, stratosphere–troposphere exchange, ground-level ozone

References:

1. URL: http://www.volcano.si.edu/index.cfm
2. Hofmann D., Barnes J., Dutton E., Deshler T., Jager H., Keen R., Osborn M. Surface-Based Observations of Volcanic Emissions to the Stratosphere // Volcanism and the Earth’s Atmosphere. Geophys. Monogr. Ser. 2003. V. 139. P. 57–73.
3. Marichev V.N., Samohvalov I.V. Lidarnye nabljudenija ajerozol'nyh vulkanicheskih sloev v stratosfere Zapadnoj Sibiri v 2008–2010 years. // Optika atmosf. i okeana. 2011. V. 24, N 3. P. 224–231.
4. Trickl T., Giehl H., Jäger H., Vogelmann H. 35 years of stratospheric aerosol measurements at Garmisch-Partenkirchen: from Fuego to Eyjafjallajökull, and beyond // Atmos. Chem. Phys. Discuss. 2012. V. 12, N 9. P. 23135–23193.
5. Woods A.W., Self S. Thermal disequilibrium at the top of volcanic clouds and its effect on estimates of the column height // Nature (Gr. Brit.). 1992. V. 355, N 6361. P. 628–630.
6. Rose W.I., Durant A.J. El Chichon volcano, April 4, 1982: volcanic cloud history and fine ash fallout // Natural Hazards. 2009. V. 51, N 2. P. 363–374.
7. Rose W.I., Delene D.J., Schneider D.J., Bluth G.J.S., Krueger J.J., Sprod I., McKee C., Davies H.L., Ernst G.G.J. Ice in the 1994 Rabaul eruption cloud: implications for volcano hazard and atmospheric effects // Nature (Gr. Brit.). 1995. V. 375, N 6531. P. 477–479.
8. Symonds R.B., Rose W.I., Bluth G., Gerlach T.M. Volcanic gas studies: methods, results, and applications // Rev. Mineral. 1994. V. 30, N 1. P. 1–66.
9. Liu B.S., Au C.T. Carbone deposition and catalyst stability over La2NiO4/–Al2O3 during CO2 reforming of methane to syngas // Appl. Catal. A: General. 2003. V. 244, N 1. P. 181–195.
10. Surovikin V.F. Sovremennye tendencii razvitija metodov i tehnologii poluchenija nanodispersnyh uglerodnyh materialov // Ros. him. zh. 2007. V. LI, N 4. P. 92–97.
11. Ingel'  L.H. Samovozdejstvie teplovydeljajushhej primesi v zhidkoj srede // Uspehi fiz. nauk. 1998. V. 168, N 1. P. 104–108.
12. Radke L.F., Lyons J.H., Hobbs P.V., Weiss R.E. Smokes from the burning of aviation fuel and their self-lofting by solar heating // J. Geophys. Res. D. 1990. V. 95, N 9. P. 14071–14076.
13. URL: http://weather.uwyo.edu/upperair/sounding.html
14. URL: http://www.ready.noaa.gov/HYSPLIT.php
15. Lelieveld J., Dentener F.J. What controls tropospheric ozone? // J. Geophys. Res. D. 2000. V. 105, N 3. P. 3531–3551.
16. URL: http://ds.data.jma.go.jp/gmd/wdcgg/wdcgg.html