Vol. 29, issue 01, article # 9

Lysenko S. A., Kugeiko M. M., Khomich V. V. Multifrequency lidar sounding of atmospheric pollution by respirable particulated matter with separation into respirable fractions. // Optika Atmosfery i Okeana. 2016. V. 29. No. 01. P. 70-79. DOI: 10.15372/AOO20160109 [in Russian].
Copy the reference to clipboard
Abstract:

The article is devoted to the methodology of obtaining the spatial distributions of respirable fractions of aerosol in the atmosphere from multifrequency lidar sounding data without the use of additional optical and microphysical aerosol parameters on the path under study. For this purpose, it has been suggested to replace the spectral values of the aerosol extinction coefficient involved in lidar equations by the linearly independent parameters of their approximation, and retrieve the spatial distributions of these parameters from the numerical solution of the system of equations created from all spectral-temporal readings of lidar signals. As a result, the number of unknowns in the system of equations, which are solved, is significantly reduced, and its matrix becomes well-conditioned that can be used to select physically reasonable values of backscatter-extinction aerosol ratio at the operating lidar wavelengths. The assumption that there are two segments with the similar profiles of aerosol extinctions coefficients is used to determine the calibration constants of lidar. The algorithm for searching such segments from the spectral-temporal structure of lidar signal is suggested. The inverse problem of aerosol light scattering is solved on the basis of stable regression relations between the concentrations of respirable aerosol fractions and approximation parameters of its extinction spectrum. The tolerance of the technique developed to the calibration errors and the spatial variations in backscatter-extinction aerosol ratio is shown from numerical experiment on laser sounding of aerosol.

Keywords:

aerosol, respirable particles, mass concentration, lidar, multifrequency sounding, calibration, optical parameters, inverse problem

References:

  1. Silva R.A., West J.J., Zhang Y., Anenberg S.C., Lamarque J.F., Shindell D., Collins W.J., Dalsoren S., Faluvegi G., Folberth G., Horowitz L.W., Nagashima T., Naik V., Rumbold S., Skeie R., Sudo K., Takemura T., Bergmann D., Cameron-Smith P., Cionni I., Doherty R.M., Eyring V., Josse B., MacKenzie I.A., Plummer D., Righi M., Stevenson D.S., Strode S., Szopa S., Zeng G. Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change // Environ. Res. Lett. 2013. V. 8, N 3. P. 034005.
  2. Zuev V.E., Kaul' V.V., Samohvalov I.V. Lazernoe zondirovanie industrial'nyh ajerozolej. Novosibirsk: Nauka, 1986. 192 p.
  3. Krekov G.M., Kavkjanov S.I., Krekova M.M. Interpretacija signalov opticheskogo zondirovanija atmosfery. Novosibirsk: Nauka, 1987. 184 p.
  4. Kovalev V.A., Eichinger W.E. Elastic lidar: Theory, practice, and analysis methods. Hoboken, New Jersey: John Wiley & Sons, 2004. 615 p.
  5. Lysenko S.A., Kugejko M.M., Homich V.V. Mnogochastotnoe lidarnoe zondirovanie mikrostruktury mnogokomponentnyh gorodskih ajerozolej // Zh. prikl. spektroskopii. 2015. V. 82, N 1. P. 115–123.
  6. Lysenko S.A., Kugejko M.M., Homich V.V. Metod opredelenija koncentracij ajerozol'nyh frakcij v prizemnom vozduhe po dannym mnogochastotnogo lidarnogo zondirovanija // Optika atmosf. i okeana. 2015. V. 28, N 3. P. 199–209. Lysenko S.A., Kugeiko M.M., Khomich V.V. Technique for Determining Mass Concentrations of Aerosol Fractions in the Surface Air from Multifrequency Lidar Sounding Data // Atmos. Ocean. Opt. 2015. V. 28, N 5. P. 455–466.
  7. Lysenko S.A., Kugejko M.M. Regressionnyj podhod k analizu informativnosti i interpretacii dannyh ajerozol'nyh opticheskih izmerenij // Zh. prikl. spektroskopii. 2009. V. 76, N 6. P. 876–883.
  8. Lysenko S.A., Kugejko M.M. Vosstanovlenie mikrofizicheskih parametrov postvulkanicheskogo stratosfernogo ajerozolja iz rezul'tatov sputnikovogo i nazemnogo mnogochastotnogo zondirovanija // Issled. Zemli iz kosmosa. 2011. N 5. P. 21–33.
  9. Lysenko S.A., Kugejko M.M. Metodika opredelenija koncentracii respirabel'noj frakcii atmosfernogo ajerozolja po dannym trehchastotnogo lidarnogo zondirovanija // Optika atmosf. i okeana. 2010. V. 23, N 2. P. 149–155. Lysenko S.A., Kugeiko M.M. Method for the Determination of the Concentration of the Respirable Atmospheric Aerosol Fraction from the Data of Three – Frequency Lidar Sensing // Atmos. Ocean. Opt. 2010. V. 23. N 3. P. 222–228.
  10. Lysenko S.A., Kugejko M.M. Metod opredelenija koncentracii ajerozol'nyh chastic v vertikal'nom stolbe atmosfery po sputnikovym izmerenijam spektral'noj opticheskoj tolshhiny // Zhurn. prikl. spektr. 2011. N 5. P. 793–800.
  11. Lysenko S.A., Kugejko M.M. Nefelometricheskij metod izmerenij massovyh koncentracij gorodskih ajerozolej i ih respirabel'nyh frakcij // Optika atmosf. i okeana. 2014. V. 27, N 5. P. 435–442. Lysenko S.A., Kugeiko M.M. Nephelometric Method for Measuring Mass Concentrations of Urban Aerosols and Their Respirable Fractions // Atmos. Ocean. Opt. 2014. V. 27, N 6. P. 587–595.
  12. Klett J.D. Stable analytic inversion solution for processing lidar returns // Appl. Opt. 1981. V. 20, N 2. P. 211–220.
  13. Fernald F.G. Analysis of atmospheric lidar observation: Some comments // Appl. Opt. 1984. V. 23, N 5. P. 652–653.
  14. Böckmann C., Wandinger U., Ansmann A., Bösenberg J., Amiridis V., Boselli A., Delaval A., De Tomasi F., Frioud M., Grigorov I.V., Hågård A., Horvat M., Iarlori M., Komguem L., Kreipl S., Larcheveque G., Matthias V., Papayannis A., Pappalardo G., Rocadenbosch F., António Rodrigues J., Schneider J., Shcherbakov V., Wiegner M. Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms // Appl. Opt. 2004. V. 43, N 4. P. 977–989.
  15. Obuhov A.M. O statisticheski ortogonal'nyh razlozhenijah jempiricheskih funkcij // Izv. AN SSSR. Geofiz. 1959. N 3. PС. 432–439.
  16. Zuev V.E., Komarov V.S. Statisticheskie modeli temperatury i gazovyh komponent zemnoj atmosfery. L.: Gidrometeoizdat, 1986. 264 p.
  17. Henk A. van der Vorst. Iterative Krylov methods for large linear systems. Cambridge: Cambridge University Press, 2003. 221 p.
  18. Чайковский А.П., Иванов А.П., Балин Ю.С., Ельников А.В., Тулинов Г.Ф., Плюснин И.И., Букин О.А., Чен Б.Б. Лидарная сеть CIS-LiNet для мониторинга аэрозоля и озона: методология и аппаратура // Оптика атмосф. и океана. 2005. Т. 18, № 12. С. 1066–1072.
  19. Adam M., Pahlow M., Kovalev V., Ondov J.M., Parlange M.B., Nair N. Aerosol optical characterization by nephelemeter and lidar: The Baltimore Supersite experiment during the Canadian forest fire smoke intrusion // J. Geophys. Res. D. 2004. V. 109, iss. 16. DOI: 10.1029/2003JD004047.
  20. Zavyalov V.V., Marchant C.C., Bingham G.E., Wilkerson T.D., Hatfield J.L., Martin R.S., Silva P.J., Moore K.D., Swasey J., Ahlstrom D.J., Jones T.L. Aglite lidar: calibration and retrievals of well characterized aerosols from agricultural operations using a three-wavelength elastic lidar // J. Appl. Remote Sens. 2009. V. 3, iss. 1. P. 033522.
  21. Murayama T., Sugimoto N., Uno I., Kinoshita K., Aoki K., Hagiwara N., Liu Z., Matsui I., Sakai T., Shibata T., Arao K., Sohn B.-J., Won J.-G., Yoon S.-C., Li T., Zhou J., Hu H., Abo M., Iokibe K., Koga R., Iwasaka Y. Ground-based network observation of Asian dust events of April 1998 in east Asia // J. Geophys. Res. D. 2001. V. 106, N 16. P. 18345–18359.
  22. Lysenko S.A., Kugejko M.M. Vosstanovlenie massovoj koncentracii pyli v promyshlennyh vybrosah iz rezul'tatov opticheskogo zondirovanija // Optika atmosf. i okeana. 2011. V. 24, N 11. P. 960–968. Lysenko S.A., Kugeiko M.M. Retrieval of Optical and Microphysical Characteristics of Postvolcanic Stratospheric Aerosol from the Results of Three-Frequency Lidar Sensing // Atmos. Ocean. Opt. 2011. V. 24, N 5. P. 466–477.
  23. Krekov G.M., Krekova M.M., Suhanov A.Ja. Ocenka jeffektivnosti ispol'zovanija perspektivnyh lidarov belogo sveta dlja zondirovanija mikrofizicheskih parametrov sloistoj oblachnosti: 2. Parametricheskaja modifikacija iteracionnogo metoda reshenija lidarnogo uravnenija // Optika atmosf. i okeana. 2009. V. 22, N 8. P. 795–802.
  24. Spuler S.M., Mayor S.D. Eye-safe aerosol lidar at 1.5 mic-rons: Progress toward a scanning lidar network // Lidar Remote Sensing for Environmental Monitoring VIII, San Diego, CA. Proc. SPIE. 2007. V. 6681. P. 668102 (11 p.). DOI: 10.1117/12.739519.
  25. Xia H., Shentu G., Shangguan M., Xia X., Jia X., Wang C., Zhang J., Pelc J.S., Fejer M.M., Zhang Q., Dou X., Pan J.W. Long-range micro-pulse aerosol lidar at 1.5  μm with an upconversion single-photon detector // Opt. Lett. 2015. V. 40, N 7. P. 1579–1582.
  26. Angstrom A. The parameters of atmospheric turbidity // Tellus. 1964. V. 16, N 1. P. 64–75.
  27. World Meteorological Organization. World Climate Research Programme: A preliminary cloudless standard atmosphere for radiation computation. Switzerland, Geneva. Report WCP-112, WMO/TD-24. 1986. 60 p.
  28. Bohren G.F., Huffman D.R. Absorption and scattering of light by small particles. New York: John Wiley & Sons, 1983. 544 p.
  29. Kugejko M.M., Lysenko S.A. Metodicheskie aspekty vosstanovlenija opticheskih harakteristik atmosfery iz rezul'tatov lazerno-lokacionnyh izmerenij // Optika atmosf. i okeana. 2006. V. 19, N 5. P. 435–440.