Vol. 29, issue 03, article # 7

Marichev V. N. Combined method for optical sensing in the lower and middle atmosphere. // Optika Atmosfery i Okeana. 2016. V. 29. No. 03. P. 210-215. DOI: 10.15372/AOO20160307 [in Russian].
Copy the reference to clipboard
Abstract:

In the lidar complex, the combined optical method for sensing the lower and middle atmosphere was used. The method is based on the receiving signals of Rayleigh (elastic molecular scattering of light at a wavelength of 532 nm) and Raman (radiation of the first vibrational-rotational transition of nitrogen molecules at a wavelength of 607 nm when excited by the laser radiation at a wavelength of 532 nm) light scattering. The use of Raman channel made it possible to eliminate the distorting effect of aerosol at altitudes of its localization (up to 25 km) on the accuracy of temperature measurement. Extended temperature profiles at altitudes from 7 to 60 km, covering the upper troposphere and middle atmosphere, were obtained during simultaneous measurements of the signals at two receiving channels. A good agreement of the data with satellite and upper-air measurements and model results was obtained.

Keywords:

temperature, lidar, Rayleigh and Raman light scattering, troposphere, stratosphere, mesosphere

References:

  1. Hauchecorne A., Chanin M.-L. Density and temperature profiles obtained by lidar between 35 and 75 km // Geophys. Res. Lett. 1980. V. 7, N 8. Р. 565–568.
  2. Thomas L. Laser radar observations of middle atmosphere structure and compositions // Phil. Trans. Roy. Soc. London. A. 1987. V. 323. Р. 597–609.
  3. Russell Ph.C. Lidar profiles of atmospheric structure properties // Proc. SPIE. 1991. V. 1492. P. 76–83.
  4. Zuev V.V., Marichev V.N., Bondarenko S.L. Lidarnye izmerenija temperatury po rjeleevskomu rassejaniju sveta v nizhnej stratosfere za period may–december 1995 year. // Оптика атмосф. и океана. 1996. V. 9, N 10. P. 1386–1393.
  5. Hinkley E.D. Laser monitoring the atmosphere. Berlin; Heidelberg; New York: Springer-Verlag, 1976. 380 р.
  6. Cooney J.A. Measurements on the Raman component of laser atmospheric backscatter // Appl. Phys. Lett. 1968. V. 12, N 40. P. 40–42.
  7. Arshinov Ju.F. Izmerenie temperatury atmosfery lidarom po vrashhatel'nym spektram KR N2 i O2. Spektroskopicheskie metody zondirovanija atmosfery. Novosibirsk: Nauka, 1985. P. 94–107.
  8. Strauch R.G., Derr V.E., Cupp R.E. Atmospheric temperature measurements using Raman backscatter // Appl. Opt. 1971. V. 10. P. 2665–2669.
  9. Ferrare R.A., Melfi S.H., Whiteman D.N., Evans K.D., Schmidlin F.J., Starr D.O. A comparison of water-vapor measurement made by Raman lidar radiosondes // J. Atmos. Ocean. Technol. 1995. V. 12, N 6. Р. 1177–1195.
  10. Third International Lidar Researchers Directory / Compiled by M.P. McCormick. NASA Langley Research Center. Hampton Virginia, 23681-0001. 1993.
  11. Zuev V.V., Marichev V.N., Bondarenko S.L., Dolgij S.I., Sharabarin E.V. Predvaritel'nye rezul'taty zondirovanija temperatury v troposfere SKR-lidarom na pervom kolebatel'no-vrashhatel'nom perehode molekul azota // Optika atmosf. i okeana. 1996. V. 9, N 12. P. 1609–1611.
  12. Mason J. Lidar measurement of temperature. A new approach // Appl. Opt. 1975. V. 14, N 1. Р. 76–78.
  13. Bills R.E., Gardner C.S., Franke S.J. Na Doppler/temperature lidar: Initial mesopause region observations and comparison with the urbana medium frequency radar // J. Geophys. Res. D. 1991. V. 96, N 12. P. 22701–22707.
  14. Gelbwachs J.A. Iron Boltzman Factor LIDAR: Proposed new remote-sensing technique for mesospheric temperature // Appl. Opt. 1994. V. 33, N 30. P. 7151–7156.
  15. Bobrovnikov S.M., Nadeev A.I. Sravnenie metodov obrabotki signala pri distancionnom izmerenii temperatury po chisto vrashhatel'nym spektram kombinacionnogo rassejanija // Optika atmosf. i okeana. 2010. V. 23, N 7. P. 580–584; Bоbrоvnikоv S.М., Nаdeеv А.I. Comparison of signal processing methods in remote temperature measurements by pure rotational Raman spectra // Atmos. Ocean. Opt. 2010. V. 23, N 6. P. 523–527.
  16. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Jeksperimental'naja ocenka chuvstvitel'nosti SKR-lidara pri ispol'zovanii srednego UF-diapazona dlin voln // Optika atmosf. i okeana. 2013. V. 26, N 1. P. 70–74; Bоbrоvnikоv S.М., Gorlov E.V., Zharkov V.I. Experimental estimation of Raman lidar sensitivity in the middle UV // Atmos. Ocean. Opt. 2013. V. 26, N 4. P. 320–325.
  17. Burlakov V.D., Dolgij S.I., Makeev A.P., Matvienko G.G., Nevzorov A.V., Soldatov A.N., Romanovskij O.A., Harchenko O.V., Jakovlev S.V. Lidarnye tehnologii distancionnogo zondirovanija parametrov atmosfery // Optika atmosf. i okeana. 2013. V. 26, N 10. P. 829–837.
  18. Penner I.Je., Balin Ju.S., Makarova M.V., Arshinov M.Ju., Voronin B.A., Belan B.D., Vasil'chenko S.S., Serdjukov V.I., Sinica L.N., Polovceva E.R., Kabanov D.M., Kohanenko G.P. Izmerenija soderzhanija vodjanogo para razlichnymi metodami. Cravnenija profilej vodjanogo para i ajerozolja // Optika atmosf. i okeana. 2014. V. 27, N 8. P. 728–738.
  19. Marichev V.N., Samohvalov I.V. Lidarnye nabljudenija ajerozol'nyh vulkanicheskih sloev v stratosfere Zapadnoj Sibiri v 2008–2010 years. // Optika atmosf. i okeana. 2011. V. 24, N 3. P. 224–231.
  20. Rees D., Barnett J.J., Labitske K. CASPAR International Reference Atmosphere: 1986. Part II. Middle Atmosphere Models // Adv. Space Res. 1990. V. 10, N 12. 525 p.