Vol. 29, issue 03, article # 9

Vasil’ev D. Yu., Kucherov S. E., Lazarev V. V. The relationship of the solar activity, climatic indices, and May–July precipitation reconstructed from the tree rings of larch in the Russian Southern Ural. // Optika Atmosfery i Okeana. 2016. V. 29. No. 03. P. 224-231. DOI: 10.15372/AOO20160309 [in Russian].
Copy the reference to clipboard
Abstract:

The May–July precipitation data for the Russian Southern Ural reconstructed via treatment of the radial growth of larch late Sukachev (Larix sukaczewii Dyl.) were analyzed with a wavelet transform. Next, a cross wavelet transform was used to compare the reconstructed data with the average annual values of Wolf numbers (sunspot numbers (SSN)) and the North Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation (AMO) indices. The wavelet analysis revealed hidden periodicities in the original series and allowed one to define the relationship with the Wolf numbers and the NAO and AMO variabilities. It was found that the dominant 11-year SSN cycle is present in the reconstructed data almost over the entire time of observation. The reconstructed series of May–July precipitation showed good correlations with the NAO index for 8–11 year periods and with the AMO index for 11–50 year periods. In the analysis, the observation time spans 375 years (1631–2005) for the reconstructed May–July rainfall series, 306 years (1700–2005) for the Wolf numbers, 141 years (1865–2005) for the NAO index, and 150 years (1856–2005) for the AMO index.

Keywords:

wavelet transform, cross wavelet transform, Fourier transformation, climate indices, reconstruction of precipitation, dendrochronological research, correlation analysis

References:

  1. Bardin M.Ju. Izmenchivost' temperatury vozduha nad zapadnymi territorijami Rossii i sopredel'nymi stranami v HH veke // Meteorol. i gidrol. 2002. N 8. P. 5–23.
  2. Egorov A.G. Solnechnyj cikl i mnogoletnie izmenenija srednej troposfery Arktiki v zimnij period // Dokl. AN. 2014. V. 459, N 1. P. 112–117.
  3. Gruza G.V., Ran'kova Je.Ja. Kolebanija klimata na territorii Rossii // Izvestija RAN. Fiz. atmosf. i okeana. 2003. V. 39, N 2. P. 166–187.
  4. Tartakovskij V.A. Sinhronnyj analiz rjadov chisel Vol'fa i temperatury s meteostancij Severnogo polusharija Zemli // Optika atmosf. i okeana. 2015. V. 28, N 2. P. 182–188.
  5. Vakulenko N.V., Sonechkin D.M. Svidetel'stvo vlijanija solnechnoj aktivnosti na Jel'-Nin'o – Juzhnoe kolebanie // Okeanologija. 2011. V. 51, N 6. P. 994–999.
  6. Vasil'ev D.Ju., Ferapontov Ju.I. Trendy v kolebanijah prizemnoj temperatury vozduha na primere Bashkirii // Izvestija RAN. Ser. geogr. 2015. N 1. P. 77–86.
  7. Dacenko N.M., Sonechkin D.M. O nadezhnosti tysjacheletnih rekonstrukcij hoda prizemnoj temperatury vozduha Severnogo polusharija // Izv. RAN. Fiz. atmosf. i okeana. 2008. V. 44, N 6. P. 797–803.
  8. Monin A.S., Sonechkin D.M. Kolebanija klimata po dannym nabljudenij. Trojnoj solnechnyj i drugie cikly. M.: Nauka, 2005. 191 p.
  9. Mohov I.I., Smirnov D.A., Karpenko A.A. Ocenki svjazi izmenenij global'noj pripoverhnostnoj temperatury s raznymi estestvennymi i antropogennymi faktorami na osnove dannyh nabljudenij // Dokl. AN. 2012. V. 443, N 2. P. 225–231.
  10. Mohov I.I., Bezverhnij V.A., Eliseev A.V., Karpenko A.A. Model'nye ocenki vozmozhnyh klimaticheskih izmenenij v HHI veke pri razlichnyh scenarijah solnechnoj i vulkanicheskoj aktivnosti i antropogennyh vozdejstvij // Kosm. issled. 2008. V. 46, N 4. P. 363–367.
  11. Meehl G.A., Arblaster J.M., Branstator G., van Loon H. A coupled air-sea response mechanism to solar forcing in the Pacific region // J. Climate. 2008. V. 21. Р. 2883–2897. DOI:10.1175/2007JCLI1776.1.
  12. Meehl G.A., Arblaster J.M., Matthes K., Sassi F., van Loon H. Amplifying the Pacific climate system response to a small 11 year solar cycle forcing // Science. 2009. V. 325. P. 1114–1118. DOI:10.1126/science. 1172872.
  13. White W.B., Lean J., Cayan D.R., Dettinger D.W. Response of global upper ocean temperature to changing solar irradiance // J. Geophys. Res. С. 1997. V. 102, iss. 2. P. 3255–3266. DOI:10.1029/96JC03549.
  14. Wang B., Liu J., Kim H-J., Webster P.J., Yim S-Y., Xiang B. Northern Hemisphere summer monsoon intensified by mega-El Niño/Southern oscillation and Atlantic multidecadal oscillation // Proc. Nat. Acad. Sci. U.S.A. 2013. V. 110, № 14. P. 5347–5352. DOI: 10.1073/pnas.1219405110.
  15. Sutton R.T., Hodson D.L.R. Atlantic ocean forcing of North American and European summer climate // Science. 2005. V. 309, N 5731. P. 115–118.
  16. Wei W., Lohmann G. Simulated Atlantic Multidecadal Oscillation during the Holocene // J. Climate. 2012. V. 25. P. 6989–7002. DOI: 10.1175/JCLI-D-11-00667.1.
  17. Nyberg J., Malgrem B.A., Winter A., Jury M.R., Kilbourn K.H., Quinn T.M. Low Atlantic hurricane activity in the 1970s and 1980s compared to the past 270 years // Nature. 2007. V. 447. P. 697–701. DOI: 10.1038/nature05895.
  18. Qian B., Corte-Real J., Xu H. Is the North Atlantic Oscillation the most important atmospheric pattern for precipitation in Europe? // J. Geophys. Res. D. 2000. V. 105, iss. 9. P. 11901–11910.
  19. Bice D., Montanari A., Vučetić V., Vućetić M. The influence of regional and global climatic oscillations on Croatian climate // Int. J. Clymatol. 2012. V. 32. P. 1537–1557. DOI: 10.1002/joc.2372.
  20. Hurrell J.W. Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation // Science. 1995. V. 269, N 4. P. 676–679.
  21. Hurrell J.W, van Loon H. Decadal variations in climate associated with the North Atlantic Oscillation // Clim. Change. 1997. V. 36. P. 301–326.
  22. Вязилова Н.А. Об экстремальной циклонической активности в Северной Атлантике // Метеорол. и гидрол. 2012. № 11. С. 5–17.
  23. D’Arrigo R.D., Cook E.R., Mann M.E., Jacoby G.C. Tree-ring reconstructions of temperature and sea-level pressure variability associated with the warm-season Arctic Oscillation since AD 1650 // Geophys. Res. Lett. 2003. V. 30, N 11. P. 1549. DOI: 10.1029/2003GL017250.
  24. Briffa K.R., Osborn T.J. Climate warming: Seeing the Wood from the Trees // Science. 1999. V. 284, N 5416. P. 926–927.
  25. Overpeck J., Hughen K., Hardy D., Bradley R., Case R., Douglas M., Finney B., Gajewski K., Jacoby G., Jennings A., Lamoureux S., Lasca A., MacDonald G., Moore J., Retelle M., Smith S., Wolfe A., Zielinski G. Arctic Environmental Change of the Last Four Centuries // Science. 1997. V. 278, N 5341. P. 1251–1256.
  26. Steinhilber F., Abreua J.A., Beera J., Brunnera I., Christlb M., Fischer H., Heikkilä U., Kubik P.W., Mann M., McCracken K.G., Miller H., Miyahara H., Oerter H., Wilhelms F. 9.400 years of cosmic radiation and solar activity from ice cores and tree rings // Proc. Nat. Acad. Sci. U.S.A. 2012. V. 109. P. 5967–5971. DOI: 10.1073/pnas.1118965109.
  27. Chen Z., Zhang X., Cui M., He X., Ding W., Peng J. Tree-ring based precipitation reconstruction for the forest–steppe ecotone in northern Inner Mongolia, China and its linkages to the Pacific Ocean variability // Global and Planetary Change. 2012. V. 86–87. P. 45–56. DOI: 10.1016/j.gloplacha.2012.01.009.
  28. Fang K., Gou X., Chen F., Liu C., Davi N., Li J., Zhao Z., Li Y. Tree-ring based reconstruction of drought variability (1615–2009) in the Kongtong Mountain area, northern China // Global Planet. Change. 2012. V. 80–81. P. 190–197. DOI: 10.1016/j.gloplacha.2011.10.009.
  29. Griffin D., Stahle D.W., Faulstich H.L., Carrillo C., Touchan R., Castro C.L., Leavitt S.W. North American monsoon precipitation reconstructed from tree-ring latewood // Geophys. Res. Lett. 2013. V. 40, N 5. P. 954–958. DOI: 10.1002/grl.50184.
  30. Morales M.S., Christie D.A., Villalba R., Argollo J., Pacajes J., Silva J.S., Alvarez C.A., Llancabure J.C., Soliz C. Precipitation changes in the South American Altiplano since 1300AD reconstructed by tree-rings // Clim. Past Discuss. 2011. V. 7. P. 4297–4334. DOI: 10.5194/cpd-7-4297-2011.
  31. Qin C., Yang B., Brauning A., Sonechkin D.M., Huang K. Regional extreme climate events on the northeastern Tibetan Plateau since AD 1450 inferred from tree rings // Global Planet. Change. 2011. V. 75, iss. 3–4. P. 143–154. DOI: 10.1016/j.gloplacha. 2010.10.013.
  32. Kucherov S.E. Rekonstrukcija letnih osadkov na Juzhnom Urale za poslednie 375 let na osnove analiza radial'nogo prirosta listvennicy Sukacheva // Jekologija. 2010. N 4. P. 248–256.
  33. Kucherov S.E., Vasil'ev D.Ju., Muldashev A.A. Rekonstrukcija osadkov maja–ijunja po radial'nomu prirostu sosny obyknovennoj na Bugul'minsko-Belebeevskoj vozvyshennosti dlja territorii Bashkirii // Jekologija. 2016. N 2. P. 83–93.
  34. Krashenninikov I.M., Kucherovskaja-Rozhanec S.E. Prirodnye resursy Bashkirskoj ASSR. V. 1. Rastitel'nost' Bashkirskoj ASSR. M., L.: AN SSSR, 1941. 156 p.
  35. Trenberth K.E., Hurrell J.W., James W. Comment on: “The Interpretation of Short Climate Records with Comments on the North Atlantic and Southern Oscillations” // Bull. Amer. Meteorol. Soc. 1999. V. 80, N 12. P. 2721–2722.
  36. Daubechies I. Ten Lectures on Wavelets. Philadelphia: Society for Industrial and Applied Mathematics, 1992. 357 p.
  37. Meyers S.D., Kelly B.G., O’Brien J.J. An introduction to wavelet analysis in oceanography and meteorology: With application to the dispersion of Yanai waves // Mon. Weather Rev. 1993. V. 121, N 10. P. 2858–2866.
  38. Vasil'ev D.Ju., Lukmanov R.L., Ferapontov Ju.I., Chuvyrov A.N. Ciklichnost' gidrometeorologicheskih harakteristik na primere Bashkirii // Dokl. AN. 2012. V. 447, N 3. P. 331–334.
  39. Vasil'ev D.Ju., Sivohip Zh.T., Chibilev A.A. Dinamika klimata i vnutrivekovye kolebanija stoka v bassejne reki Ural // Dokl. AN. 2016. (v pechati).
  40. Sapozhnikova V.A., Gruzdev A.N., Ageev B.G., Ponomarev Ju.N., Savchuk D.A. Svjaz' variacij soderzhanija CO2 i N2O v godichnyh kol'cah kedra sibirskogo s variacijami meteorologicheskih parametrov // Dokl. AN. 2013. V. 450, N 5. P. 592–598.
  41. Christie D.A., Boninsegna J.A., Cleaveland M.K., Lara A., Quesne C., Morales M.S., Mudelsee M., Stahle D.W., Villalba R. Aridity changes in the Temperate-Mediterranean transition of the Andes since AD 1346 reconstructed from tree-rings // Clim. Dyn. 2011. V. 36. P. 1505–1521. DOI: 10.1007/s00382-009-0723-4.
  42. Nagaya K., Kitazawa K., Miyake F., Masuda K., Muraki Y., Nakamura T., Miyahara H., Matsuzaki H. Variation of the Schwabe cycle length during the Grand Solar Minimum in the 4th centure BC deduced from radiocarbon content in tree rings // Solar Phys. 2012. V. 280. P. 223–236. DOI: 10.1007/s11207-012-0045-2.
  43. Touet V., Taylor A.H. Multi-century variability in the Pacific North American circulation pattern reconstructed from tree rings // Clim. Dyn. 2010. V. 35. P. 953–963. DOI: 10.1007/s00382-009-0605-9.
  44. Rigozo N.R., Lisi C.S., Fiho M.T., Prestes A., Nordemann D.J.R., Echer M.P.S., Echer E., Silva H.E., Rigozo V.F. Solar-Terrestrial Signal Record in Tree Ring Width Time Series from Brazil // Pure Appl. Geophys. 2012. DOI: 10.1007/s00024-012-0480-x.
  45. Grinsted A., Moore J.C., Jevrejeva S. Application of cross wavelet transforms and wavelet coherence to geophysical time series // Nonlinear Process. Geophys. 2004. V. 11. P. 561–566. SRef-ID: 1607-7946/ npg/2004-11-561.
  46. Torrence C., Compo G.P. A practical guide to wavelet analysis // Bull. Amer. Meteorol. Soc. 1998. V. 79, N 1. P. 61–78.
  47. Maraun D., Kurths J. Cross wavelet analysis: Significance testing and pitfalls // Nonlinear Process. Geophys. 2004. V. 11. P. 505–514. SRef-ID: 1607-7946/npg/2004-11-505.
  48. Rigozo N.R., Viera L.E.A., Echer E., Nordemann D.J.R. Wavelet analysis of Solar-ENSO imprints in tree rings data from Sourthen Brazilin the last century // Clim. Change. 2003. V. 60, N 6. P. 329–340.
  49. Rossi A., Massei N., Laignel B. A synthesis of the time-scale variability of commonly used climate indices using continuous wavelet transform // Global Planet. Change. 2011. V. 78, N 1. P. 1–13. DOI: 10.1016/ j.gloplacha.2011.04.008.