Vol. 29, issue 04, article # 1

Banakh V. A., Sukharev A. A. Contribution of atmospheric turbulence in distortions of laser beams caused by а shock wave arising at the supersonic flowing the turret. // Optika Atmosfery i Okeana. 2016. V. 29. No. 04. P. 257–262. DOI: 10.15372/AOO20160401 [in Russian].
Copy the reference to clipboard
Abstract:

In this article, we present the results of analysis of the mean intensity, intensity fluctuations, and regular and random wandering of the optical beams crossing a shock wave arising at the supersonic flowing the turret in a turbulent atmosphere. It is shown that with increase of the optical turbulence the impact of the shock wave, arising at the supersonic flowing the turret, is so strong that even at the worst turbulent condition the aero optical impact of the shock wave on the optical beam remains predominant.

Keywords:

shock wave, turret, mean intensity, turbulence, variance of intensity fluctuations

References:

  1. Frumker E., Pade O. Generic method for aero-optic evaluations // Appl. Opt. 2004. V. 43, N 16. P. 3224–3228.
  2. Pade O. Propagation through Shear Layers // Proc. SPIE. 2006. V. 6364. P. 63640E.
  3. Volkov K.N., Emel'janov V.N. Ajeroopticheskie jeffekty v turbulentnom potoke i ih modelirovanie // Zh. tehn. fiz. 2008. V. 78, issue 2. P. 77–82.
  4. Henriksson М., Sjöqvist L., Parmhed O., Fureby C. Numerical laser beam propagation using large eddy simulation of a jet engine flow field // Opt. Eng. V. 54, iss. 8. 085101 (10 p.). DOI: 10.1117/1.OE.54.8.085101.
  5. Bo L., Hong L. Aero-Optical Characteristics of Supersonic Flow over Blunt Wedge with Cavity Window // J. Shanghai Jiaotong Univ. 2011. V. 16, iss. 6. P. 742–749.
  6. Xu L., Cai Y. Influence of altitude on aero-optic imaging deviation // Appl. Opt. 2011. V. 50, N 18. P. 2949–2957.
  7. Wang M., Mani A., Gordeev S. Physics and Computation of Aero-Optics // Annu. Rev. Fluid Mech. 2012. V. 44. P. 299–321.
  8. Gao Q., Yi S.H., Jiang Z.F., He L., Zhao Y.X. Hierarchical structure of the optical path length of the supersonic turbulent boundary layer // Opt. Express. 2012. V. 20, iss. 15. P. 16494–16503.
  9. Banah V.A., Suharev A.A., Falic A.V. Difrakcija opticheskogo puchka na udarnoj volne, voznikajushhej vblizi sverhzvukovogo letatel'nogo apparata // Optika atmosf. i okeana. 2013. V. 26, N 11. P. 932–941.
  10. Banakh V.A., Sukharev A.A., Falits A.V. Optical beam distortions induced by a shock wave // Appl. Opt. 2015. V. 54, iss. 8. P. 2023–2031.
  11. Banah V.A., Suharev A.A., Falic A.V. Projavlenie ajeroopticheskih jeffektov v turbulentnoj atmosfere pri sverhzvukovom dvizhenii konusoobraznogo tela // Optika atmosf. i okeana. 2014. V. 27, N 8. P. 679–688; Banakh V.A., Sukharev A.A., Falits A.V. Manifestation of aero-optical effects in a turbulent atmosphere in supersonic motion of a conical body // Atmos. Ocean. Opt. 2015. V. 28, N 1. P. 24–33.
  12. Banah V.A., Suharev A.A. Iskazhenija lazernyh puchkov, vyzyvaemye udarnoj volnoj vblizi tureli sverhzvukovogo letatel'nogo apparata // Optika atmosf. i okeana. 2016. V. 29, N 1. P. 14–22.
  13. Gurvich A.S., Gracheva M.E. Prostaja model' dlja rascheta turbulentnyh pomeh v opticheskih sistemah // Izv. AN SSSR. Fizika atmosf. i okeana. 1980. V. 16, N 10. P. 1107–1111.
  14. Zuev V.E., Banah V.A., Pokasov V.V. Optika turbulentnoj atmosfery. Sovremennye problemy atmosfernoj optiki. V. 5. L.: Gidrometeoizdat, 1988. 270 p.
  15. Kandidov V.P. Metod Monte-Karlo v nelinejnoj statisticheskoj optike // Uspehi fiz. nauk. 1996. V. 166, N 12. P. 1309–1338.
  16. Tatarskij V.I. Rasprostranenie lazernogo izluchenija v atmosfere. M.: Nauka, 1967. 548 p.
  17. Rytov S.M., Kravcov O.A., Tatarskij V.I. Vvedenie v statisticheskuju radiofiziku. Part 2. M.: Nauka, 1978. 463 p.