Vol. 29, issue 04, article # 10

Popovicheva O. B., Kozlov V. S., Rakhimov R. F., Shmargunov V. P., Kireeva E. D., Persiantseva N. M., Timofeev M. A., Engling G., Elephteriadis K., Diapouli L., Panchenko M. V., Zimmermann R., Schnelle-Kreis J. Optical-microphysical and physical-chemical characteristics of Siberian biomass burning: small-scale fires in an aerosol chamber. // Optika Atmosfery i Okeana. 2016. V. 29. No. 04. P. 323–331. DOI: 10.15372/AOO20160410 [in Russian].
Copy the reference to clipboard
Abstract:

Impact of combustion phases of typical Siberian biomass on optical, microphysical, and physical-chemical properties of smoke aerosols were investigated in small-scale fires at the Large Aerosol Chamber (LAC). The comprehensive analysis has revealed the influence of combustion temperature on formation and time evolution of pine and debris emission characteristics. Size distributions and complex refractive indices in the ranges of ultrafine, fine, and coarse particles were determined from polar spectronephelometer measurements of the angular aerosol scattering. In smoldering phases, smoke is found to be weakly absorbing while mixed fires also emit strongly absorbing soot particles produced in open flaming phases. Characteristics of aerosol microstructure such as morphology and composition were analyzed. Group Soot and Organics were identified as micromarkers of Siberian biomass burning in open flaming and smoldering phases, respectively. Carbon fraction (organic and elemental carbon), chemical compounds, and water-soluble ionic fraction exhibit the strong dependence on the combustion phase. Anhydrosugar (levoglucosan) was determined in smoldering fires as the stable molecular marker of Siberian pine burning. A number of chemical compounds were found to act as specific markers of soft wood. At smoke aging in a chamber the condensation of organic and inorganic species leads to transformation of the aerosol surface chemistry and formation of the particle group rich by potassium. Thus, the complexicity and changeability of chemical composition and microstructure of atmospheric aerosol pollution during Siberian wildfires were realized.

Keywords:

smoldering, open burning, mixing burning, Siberian biomasses, Large Aerosol Chamber, smokes, smoke particle’s characteristics

References:

  1. Lavoúe D.C., Liousse C., Cachier H., Stocks B.J., Goldammer J.G. Modelling of carbonaceous particles emitted by boreal and temperate wildfires at northern latitudes // J. Geophys. Res. A. 2000. V. 105, N D22. P. 26871–26890.
  2. Paris J.-D., Stohl A., Nedelec P., Arshinov M.Yu., Panchenko M.V., Shmargunov V.P., Law K.S., Belan B.D., Ciais P. Wildfire smoke in the Siberian Arctic in summer: Source characterization and plume evolution from airborne measurements // Atmos. Chem. Phys. 2009. N 9. P. 9315–9327. DOI: 10.5194/acp9-9315-2009.
  3. Diapouli E., Popovicheva O., Kistler M., Vratolis S., Persiantseva N., Timofeev M., Kasper-Giebl A., Eleftheriadis K. Physicochemical characterization of aged biomass burning aerosol after long-range transport to Greece from large scale wildfires in Russia and surrounding regions, Summer 2010 // Atmos. Environ. 2014. V. 96. P. 393–404. DOI: 10.1016/j.atmosenv. 2014.07.055.
  4. Agarwal S., Aggarwal S.G., Okuzawa K., Kawamura K. Size distribution of dicarboxylic acids, ketoacids, a-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: Implication for long-range transport of Siberian biomass burning and East Asia polluted aerosols // Atmos. Chem. Phys. 2010. V. 10. P. 5839–5858. DOI: 10.5194/ acp-10-5839-2010.
  5. Reid J., Koppmann R., Eck T., Eleuterio D. A review of biomass burning emissions. Part 2: Intensive physical properties of biomass burning particles // Atmos. Chem. Phys. 2005. V. 5. P. 799–825. DOI: 10.5194/ acp-5-799-2005.
  6. Bruns E.A., Krapf M., Orasche J., Huang Y., Zim-mermann R., Drinovec L., Mocnik G., El-Haddad I., Slowik J.G., Dommen J., Baltensperger U., Prevot A.S.H. Characterization of primary and secondary wood combustion products generated under different burner loads // Atmos. Chem. Phys. 2015. V. 5. P. 2825–2841. DOI: 10.5194/acp-15-2825-2015.
  7. Elsasser M., Busch C., Orasche J., Schön C., Hartmann H., Schnelle-Kreis J., Zimmermann R. Dynamic changes of the aerosol composition and concentration during different burning phases of wood combustion // Energy Fuels. 2013. V. 27, N 8. P. 4959–4968.
  8. Popovicheva O., Kistler M., Kireeva E., Persiantseva N., Timofeev M., Kopeikin V., Kasper-Giebl A. Physicochemical characterization of smoke aerosol during large-scale wildfires: Extreme event of August 2010 in Moscow // Atmos. Environ. 2014. V. 96. P. 405–414. DOI: 10.1016/j.atmosenv.2014.03.026.
  9. Kozlov V.S., Panchenko M.V., Yausheva E.P. Mass fraction of Black Carbon in submicron aerosol as an indicator of influence of smokes from remote forest fires in Siberia // Atmos. Environ. 2008. V. 42, N 11. P. 2611–2620. DOI: 10.1016/j.atmosenv.2007.07.036.
  10. Panchenko M.V., Sviridenkov M.A., Terpugova S.A., Kozlov V.S. Active spectral nephelometry as a method for the study of submicron atmospheric aerosols // Int. J. Remote Sens. 2008. V. 29, iss. 9. P. 2567–2583.
  11. Kozlov V.S., Panchenko M.V., Yausheva E.P. Diurnal behavior of the submicron aerosol and Black Carbon in the ground layer // Atmos. Ocean. Opt. 2011. V. 24, N 1. P. 30–38.
  12. Popovicheva O.B., Kireeva E.D., Timofeev M.A., Shonija N.K., Mogil'nikov V.P. Uglerodosoderzhashhie ajerozoli v jemissijah aviacii i morskogo transporta // Izv. RAN. Fiz. atmosf. i okeana. 2010. V. 46, N 3. P. 368–375.
  13. Orasche J., Schnelle-Kreis J., Schoen C., Hartmann H., Ruppert H., Arteaga-Salas J.M., Zimmermann R. Comparison of Emissions from Wood Combustion. Part 2: Impact of Combustion Conditions on Emission Factors and Characteristics of Particle-Bound Organic Species and Polycyclic Aromatic Hydrocarbon (PAH)-Related Toxicological Potential // Energy Fuels. 2013. V. 27, N 3. P. 1482–1491.
  14. Samsonov Y.N., Ivanov V.A., McRae D.J., Baker S.P. Chemical and dispersal characteristics of particulate emissions from forest fires in Siberia // Int. J. Wildland Fire. 2012. V. 21, N 7. P. 818–827.
  15. Engling G., Lee J.J., Sie Hao-Jyun, Wu Yi-Chih, Yet-Pole I. Anhydrosugar characteristics in biomass smoke aerosol-case study of environmental influence on particle-size of rice straw burning aerosol // J. Aerosol Sci. 2013. V. 56. P. 2–14. DOI: 10.1016/j.jaerosci. 2012.10.001.
  16. Reisen F., Duran S.M., Flannigan M., Elliott C., Rideout K. Wildfire smoke and public health risk // Int. J. Wildland Fire. 2015. V. 24, N 8. P. 1029–1044.
  17. Bolling A.K., Totlandsdal A.I., Sallsten G., Braun A., Westerholm R., Bergvall C., Boman J., Dahlman H.J., Sehlstedt M., Cassee F., Sandstrom T., Schwarze P.E., Herseth J.I. Wood smoke particles from different combustion phases induce similar pro-inflammatory effects in a co-culture of monocyte and pneumocyte cell lines // Part. Fibre Toxicol. 2012. V. 9. P. 45–60. DOI: 10.1186/1743-8977-9-45.
  18. Kozlov V.S., Yausheva E.P., Terpugova S.A., Panchenko M.V., Chernov D.G., Shmargunov V.P. Optical-microphysical properties of smoke haze from Siberian forest fires in summer 2012 // Int. J. Remote Sens. 2014. V. 35, N 15. P. 5722–5741.
  19. Hopkins R., Levis K., Desyaterik Y., Wang Z., Tivanski A.V., Arnott W.P., Laskin A., Gilles M.K. Correlation between optic, chemical and physical properties of biomass burn aerosols // Geophys. Res. Lett. 2007. V. 34. L18806. DOI: 10.1029/2007GL030502.
  20. Kozlov V.S., Panchenko M.V., Tumakov A.G. Influence of regimes of burning hydrocarbon fuels on the optical properties of smoke aerosols // Atmos. Ocean. Opt. 1993. V. 6, N 10. P. 733–738.
  21. Kozlov V.S., Panchenko M.V. Investigation of optical characteristics and particle-size distribution of wood-smoke aerosols // Combust., Explos. Shock Waves. 1996. V. 32, N 5. P. 577–588.
  22. Popovicheva O.B., Kozlov V.S., Engling G., Diapouli E., Persiantseva N.M., Timofeev M.A., Fan T.-S., Saraga D., Eleftheriadis K. Small-scale study of Siberian biomass burning: I. Smoke microstructure // Aerosol Air Qual. Res. 2015. V. 15. P. 117–128. DOI: 10.4209/aaqr.2014.09.0206.
  23. Rakhimov R.F., Kozlov V.S., Shmargunov V.P. Time dynamics of the complex refractive index and particle microstructure according to data of spectronephelometer measurements in mixedcomposition smokes // Atmos. Ocean. Opt. 2012. V. 25, N 1. P. 51–61.
  24. Rakhimov R.F., Makienko E.V. Some methodic additions to the solution of the inverse problem for the reconstruction of the parameters of the disperse structure of mixed smokes // Atmos. Ocean. Opt. 2010. V. 23, N 4. P. 259–265.
  25. Popovicheva O.B., Kireeva E.D., Shonija N.K., Vojti-sek-Lom M., Schwarz J. FTIR analysis of surface functionalities on particulate matter produced by off-road diesel engines operating on diesel and biofuel // Environ. Sci. Pollut. Res. 2015. V. 22, N 6. P. 4534–4544.
  26. Zhang Z.S., Engling G., Chan C.Y., Yang Y.H., Lin M., Shi S., He J., Li Y.D., Wang X.M. Determination of isoprene-derived secondary organic aerosol tracers (2-methyltetrols) by HPAEC-PAD: Results from size-resolved aerosols in a tropical rainforest // Atmos. Environ. 2013. V. 70. P. 468–476. DOI: 10.1016/ j.atmosenv.2013.01.020.
  27. Orasche J., Schnelle-Kreis J., Schoen C. Hartmann H., Ruppert H., Arteaga-Salas J.M., Zimmermann R. Comparison of Emissions from Wood Combustion. Part 2: Impact of Combustion Conditions on Emission Factors and Characteristics of Particle-Bound Organic Species and Polycyclic Aromatic Hydrocarbon (PAH)-Related Toxicological Potential // Energy Fuels. 2013. V. 27, N 3. P. 1482–1491.