Abstract:
Coherent properties of the diffraction-free optical beams propagating in a turbulent atmosphere are studied. The problem analysis is based on solution of the equation for the second-order mutual coherence function of a field of optical radiation. The behavior of the degree of coherence of the diffraction-free (cos and fundamental Bessel) optical beams depending on parameters of the beams and characteristics of the turbulent atmosphere is investigated. It has appeared that fundamental property of diffraction-free beams is the oscillating character of coherence degree of these beams, which is shown at low levels of fluctuations in the turbulent atmosphere. At high levels of fluctuations in the turbulent atmosphere, the degree of coherence of a diffraction-free cos beam becomes closer to the similar characteristic of a plane wave, while a diffraction-free fundamental Bessel beam becomes closer to a spherical wave. The analysis of two spatial scales of degree of coherence of optical beams has shown that the integral scale of coherence degree for diffraction-free beams is more representative characteristic than coherence of radius. The integral scale of coherence degree of diffraction-free beams is practically unequivocally connected with conditions of propagation of optical radiation in a turbulent atmosphere.
Keywords:
Bessel beam, optical radiation, atmospheric turbulence, second-order mutual coherence function, coherence
References:
- Allen L., Barnett S.M., Padgett M.J. Optical angular momentum. Bristol: Institute of Physics, 2003. 300 p.
- Andrews D.L. Structured light and its applications: An introduction to phase-structured beams and nanoscale optical forces. New York: Academic press, 2008. 341 p.
- Mahmoud M.A., Shalaby M.Y., Khalil D. Propagation of Bessel beams generated using finite-width Durnin ring // Appl. Opt. 2013. V. 52, N 2. P. 256–253.
- Ornigotti M., Aiello A. Generalized Bessel beams with two indices // Opt. Lett. 2014. V. 39, N 19. P. 5618–5621.
- Banah V.A., Falic A.V. Chislennoe modelirovanie rasprostranenija lazernyh puchkov, formiruemyh mnogojelementnymi aperturami, v turbulentnoj atmosfere pri teplovom samovozdejstvii // Optika atmosf. i okeana. 2013. V. 26, N 5. P. 371–380; Banakh V.A., Falits A.V. Numerical simulation of propagation of laser beams formed by multielement apertures in a turbulent atmosphere under thermal blooming // Atmos. Ocean. Opt. 2013. V. 26, N 6. P. 455–465.
- Banah V.A., Falic A.V Ocenka jeffektivnosti fokusirovki mnogojelementnogo puchka v uslovijah teplovogo samovozdejstvija // Optika atmosf. i okeana. 2014. V. 27, N 1. P. 11–17; Banakh V.A., Falits A.V. Efficiency of combined beam focusing under thermal blooming // Atmos. Ocean. Opt. 2014. V. 27, N 3. P. 211–217.
- Banah V.A., Falic A.V. Ushirenie Lagerrova puchka v turbulentnoj atmosfere // Optika i spektroskopija. 2014. V. 117, N 6. P. 969–975.
- Fahrbach F.O., Gurchenkov V., Alessandri K., Nassoy P., Rohrbach A. Self-reconstructing sectioned Bessel beams offer submicron optical sectioning for large fields of view in light-sheet microscopy // Opt. Express. 2013. V. 21, N 9. P. 11425–11440.
- Gong L., Ren Y., Xue G., Wang Q., Zhou J., Zhong M., Wang Z., Li Y. Generation of nondiffracting Bessel beam using digital micromirror device // Appl. Opt. 2013. V. 52, N 19. P. 4566–4575.
- Xie Z., Armbruster V., Grosjean T. Axicon on a gradient index lens (AXIGRIN): Integrated optical bench for Bessel beam generation from a point-like source // Appl. Opt. 2014. V. 53, N 26. P. 6103–6107.
- Alyingoz C., Yalizay B., Akturk S. Propagation characteristics of Bessel beams generated by continuous, incoherent light sources // J. Opt. Soc. Amer. A. 2015. V. 32, N 8. P. 1567–1575.
- Birch P., Ituen I., Young R., Chatwin Ch. Long-distance Bessel beam propagation through Kolmogorov turbulence // J. Opt. Soc. Amer. A. 2015. V. 32, N 11. P. 2066–2073.
- Wei X., Liu Ch., Niu L., Zhang Z., Wang K., Yang Z., Liu J. Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range // Appl. Opt. 2015. V. 54, N 36. P. 10641–10649.
- Киселев А.П. Локализованные световые волны: параксиальные и точные решения волнового уравнения (Обзор) // Оптика и спектроскопия. 2007. Т. 102, № 4. С. 661–681.
- Eyyuboglu H.T., Baykal Y., Cai Y. Complex degree of coherence for partially coherent general beams in atmospheric turbulence // J. Opt. Soc. Amer. A. 2007. V. 24, N 9. P. 2891–2901.
- Belen'kij M.S., Lukin V.P., Mironov V.L., Pokasov V.V. Kogerentnost' lazernogo izluchenija v atmosfere. Novosibirsk: Nauka, 1985. 176 p.
- Lukin I.P. Kogerentnost' besseleva puchka v turbulentnoj atmosfere // Optika atmosf. i okeana. 2012. V. 25, N 5. P. 393–402; Lukin I.P. Coherence of a Bessel beam in a turbulent atmosphere // Atmos. Ocean. Opt. 2012. V. 25, N 5. P. 328–337.
- Lukin I.P. Fluktuacii fazy bessel'-gaussovyh puchkov v sluchajno-neodnorodnyh sredah // Optika atmosf. i okeana. 2010. V. 23, N 1. P. 66–70; Lukin I.P. Bessel–Gaussian beam phase fluctuations in randomly inhomogeneous media // Atmos. Ocean. Opt. 2010. V. 23, N 3. P. 236–240.
- Rytov S.M., Kravcov Ju.A., Tatarskij V.I. Vvedenie v statisticheskuju radiofiziku. Part 2. Sluchajnye polja. M.: Nauka, 1978. 464 p.
- Lukin I.P. Kol'cevaja dislokacija stepeni kogerentnosti vihrevogo besseleva puchka v turbulentnoj atmosfere // Optika atmosf. i okeana. 2015. Т. 28, № 4. С. 298–308; Lukin I.P. Ring dislocation of the coherence degree of a vortex Bessel beam in a turbulent atmosphere // Atmos. Ocean. Opt. 2015. V. 28, N 5. P. 415–425.
- Gradshtejn I.S., Ryzhik I.M. Tablicy integralov, summ, rjadov i proizvedenij. M.: Nauka, 1971. 1108 с.
- Fedorjuk M.V. Metod perevala. M.: Nauka, 1977. 368 p.
- Ahmanov S.A., D'jakov Ju.E., Chirkin A.S. Vvedenie v statisticheskuju radiofiziku i optiku. M.: Nauka, 1981. 640 p.
- Shchegrov A.V., Wolf E. Partially coherent conical beams // Opt. Lett. 2000. V. 25, N 3. P. 141–143.