Vol. 29, issue 04, article # 9

Marakasov D. A., Rytchkov D. S. Estimation of the effective beam width of axially symmetric laser beams propagating in the turbulent atmosphere using the Pointing vector streamlines. // Optika Atmosfery i Okeana. 2016. V. 29. No. 04. P. 317–322. DOI: 10.15372/AOO20160409 [in Russian].
Copy the reference to clipboard
Abstract:

In the given paper, using the Pointing vector streamlines, the effective beam width dependence on initial field distribution of axially symmetric laser beam, propagating in the turbulent atmosphere, is investigated. Spatial evolution of effective beam widths of ring-shaped laser beams, such as Laguerre–Gaussian and dark hollow beams was examined in comparison with Gaussian beams under condition that the beam power in transmitter aperture of an atmospheric optical system is the same for all laser beam modes studied in the paper. It was shown that in the case of medium-to-strong turbulence effective beam widths of high-order Laguerre–Gaussian and dark hollow beams can be less than effective beam width of a Gaussian beam in the atmosphere.

Keywords:

turbulence, effective beam width, streamlines, mutual coherence function

References:

  1. Rytov S.M., Kravcov Ju.A., Tatarskij V.I. Vvedenie v statisticheskuju radiofiziku. Part 2. Sluchajnye polja. M.: Nauka, 1978. 464 p.
  2. Aksenov V.P., Banah V.A., Valuev V.V., Zuev V.E., Morozov V.V., Smaliho I.N., Cvyk R.Sh. Moshhnye lazernye puchki v sluchajno-neodnorodnoj atmosfere / Pod red. V.A. Banah. Novosibirsk: Izd-vo SO RAN, 1998. 340 p.
  3. Banah V.A., Smaliho I.N. Sluchajnye smeshhenija lazernogo puchka v turbulentnoj atmosfere pri teplovom samovozdejstvii // Optika atmosf. i okeana. 1988. V. 1, N 9. P. 32–37.
  4. Banah V.A., Falic A.V. Chislennoe modelirovanie rasprostranenija lazernyh puchkov, formiruemyh mnogojelementnymi aperturami, v turbulentnoj atmosfere pri teplovom samovozdejstvii // Optika atmosf. i okeana. 2013. V. 26, N 5. P. 371–380; Banakh V.A., Falits A.V. Numerical Simulation of Propagation of Laser Beams Formed by Multielement Apertures in a Turbulent Atmosphere under Thermal Blooming // Atmos. Ocean. Opt. 2013. V. 26, N 6. P. 455–465.
  5. Lukin I.P. Ustojchivost' kogerentnyh vihrevyh besselevyh puchkov pri rasprostranenii v turbulentnoj atmosfere // Optika atmosf. i okeana. 2014. V. 27, N 5. P. 367–374
  6. Falic A.V. Bluzhdanie i fluktuacii intensivnosti fokusirovannogo lagerra–gaussova puchka v turbulentnoj atmosfere // Optika atmosf. i okeana. 2015. V. 28, N 9. P. 763–771.
  7. Eyyuboglu H.T. Hermite-cosine-Gaussian laser beam and its propagation characteristics in turbulent atmosphere // J. Opt. Soc. Am. A. 2005. V. 22. P. 1527–1535.
  8. Zhu K., Zhou G., Li X., Zheng X., Tang H. Propagation of Bessel–Gaussian beams with optical vortices in turbulent atmosphere // Opt. Express. 2008. V. 16, N 26. P. 21315–21320.
  9. Lukin V.P., Konyaev P.A., Sennikov V.A. Beam spreading of vortex beams propagating in turbulent atmosphere // Appl. Opt. 2012. V. 51, iss. 10. P. C84–C87.
  10. Cai Y., Lu X., Lin Q. Hollow Gaussian beams and their propagation properties // Opt. Lett. 2003. V. 28, N 13. P. 1084–1086.
  11. Banakh V.A., Marakasov D.A., Rytchkov D.S., Baykal Y.K., Eyyuboğlu H.T. Method of evaluation of the mutual coherence function of laser beams and its application for symmetric dark hollow beams // Proc. SPIE. 2011. V. 7924. 792406. DOI: 10.1117/12.876486.
  12. Banah  V.A., Falic A.V. Ushirenie lagerrova puchka v turbulentnoj atmosfere // Optika i spektroskopija. 2014. V. 117, N 6. P. 969–975.
  13. Andrews L.C., Phillips R.L. Laser Beam Propagation through Random Media. 2nd ed. SPIE Press, 2005. 808 p.
  14. Aksenov V.P., Pogutsa C.E. Increase in laser beam resistance to random inhomogeneities of atmospheric permittivity with an optical vortex included in the beam structure // Appl. Opt. 2012. V. 51, N 30. P. 7262–7267.
  15. Abramovic M., Stigan I. Spravochnik po special'nym funkcijam. M.: Nauka, 1979. 832 p.
  16. Mironov V.L. Rasprostranenie lazernogo puchka v turbulentnoj atmosfere. Novosibirsk: Nauka, 1981. 246 p.
  17. Rychkov D.S., Marakasov D.A. Metod postroenija linij toka vektora srednego potoka jenergii vihrevogo puchka v turbulentnoj atmosfere // Izv. vuzov. Fiz. 2010. V. 53, N 9/3. P. 104–106.
  18. Rychkov D.S., Marakasov D.A. Programma postroenija srednego volnovogo fronta lazernogo puchka na gorizontal'nyh trassah v turbulentnoj atmosfere «WFT_Eval»: Svidetel'stvo o gosudarstvennoj registracii programm dlja JeVM № 2012618254 ot 12.09.2012 g.  Pravoobladatel': IOA SO RAN (RU).
  19. Marakasov D.A., Rychkov D.S. Metod rascheta funkcii vzaimnoj kogerentnosti opticheskoj volny v turbulentnoj atmosfere // Optika atmosf. i okeana. 2010. V. 23, N 9. P. 761–767.