Abstract:
A model of single filamentation of a high-power ultrashort light pulse has been developed on the basis of evolutionary dependences of phase and amplitude parameters of the light field derived from numerical solution of the nonlinear Schrödinger equation for air. A key role of aberrations and diffraction effects during formation of stable dynamic light structures near the propagation axis is shown. It is found that the angular divergence of post-filamentation light channel decreases with increasing radius of the laser beam at a fixed pulse peak power and reaches saturation at the radius greater than 1 mm.
Keywords:
self-focusing, filamentation, diffraction-beam tube, post-filamentation channel
References:
- Self-focusing: Past and present. Fundamentals and prospects // Topics in Applied Physics / Eds. R.W. Boyd et al. Berlin: Springer, 2009. V. 114. P. 3–19.
- Chekalin S.V., Kandidov V.P. Ot samofokusirovki svetovyh puchkov – k filamentacii lazernyh impul'sov // Uspehi fiz. nauk. 2013. V. 183, issue 2. P. 133–152.
- Mehain G., Couairon A., Andre Y.-B., D'Amico C., Franco M., Prade B., Tzortzakis S., Mysyrowicz A., Sauerbrey R. Long-range self-channeling of infrared laser pulses in air: A new propagation regime without ionization // Appl. Phys. B. 2004. V. 79. P. 379–382.
- Kasparian J., Wolf J.-P. Physics and applications of atmospheric nonlinear optics and filamentation // Opt. Express. 2008. V. 16, N 1. P. 466–493.
- Zvorykin V.D., Ionin A.A., Levchenko A.O., Seleznev L.V., Sinitsyn L.V., Smetanin I.V., Ustinovskii N.N., Shutov A.V. Extended plasma channels created by UV laser air and their application to control electric discharges // Plasma Phys. Reports. 2015. V. 41, N 2. P. 112–146.
- Askar'jan G.A. Vozdejstvie gradienta polja intensivnogo jelektromagnitnogo lucha na jelektrony i atomy // Zh. jeksperim. i teor. fiz. 1962. V. 42, issue 6. P. 1567–1570.
- Gao H., Liu W., Chin S.L. Post-filamentation multiple light channel formation in air // Laser Phys. 2014. V. 24, N 5. 055301 (7 р.).
- Daigle J.-F., Kosareva O.G., Panov N.A., Wang T.-J., Hosseini S., Yuan S., Roy G., Chin S.L. Formation and evolution of intense, post-filamentation, ionization-free low divergence beams // Opt. Commun. 2011. V. 284, N 14. Р. 3601–3606.
- Zemljanov A.A., Bulygin A.D., Gejnc Ju.Je. Jenergeticheskie svetovye struktury pri filamentacii femtosekundnogo lazernogo izluchenija v vozduhe. K 50-letiju pervoj publikacii o samofokusirovke sveta // Optika atmosf. i okeana. 2013. V. 26, N 5. P. 350–362; Zemlyanov А.А., Bulygin А.D., Geints Yu.E. Energy light structures during fentosecond laser radiation filamentation in air. To the 50th anniversary of the first paper about light self-focusing // Atmos. Ocean. Opt. 2014. V. 27, N 6. P. 463–474.
- Ahmanov S.A., Suhorukov A.P., Hohlov R.V. Samofokusirovka i difrakcija sveta v nelinejnoj srede // Uspehi fiz. nauk. 1967. V. 93, issue 1. P. 19–70.
- Lugovoi V.N., Prokhorov A.M. A possible explanation of the small scale self-focusing filaments // JETP Lett. 1968. V. 7, N 5. P. 117–119.
- Kosareva O.G., Kandidov V.P., Brodeur A., Chin S. From filamentation in condensed media to filamentation in gases // J. Nonlinear Opt. Phys. Mater. 1997. V. 6, N 4. P. 485–494.
- Liu W., Gravel J.-F., Theberge F., Becker A., Chin S.L. Background reservoir: Its crucial role for long-distance propagation of femtosecond laser pulses in air // Appl. Phys. B. 2005. V. 80, N 7. P. 857–860.
- Zuoqiang Hao, Jie Zhang, Xin Lu, Tingting Xi, Zhe Zhang, Zhaohua Wang. Energy interchange between large-scale free propagating filaments and its background reservoir // Opt. Soc. Amer. B. 2009. V. 26, N 3. P. 499–502.
- Zemljanov A.A., Bulygin A.D., Gejnc Ju.Je. Difrakcionnaja optika svetovogo filamenta, obrazovannogo pri samofokusirovke femtosekundnogo lazernogo impul'sa v vozduhe // Optika atmosf. i okeana. 2011. V. 24, N 10. P. 839–847; Zemlyanov А.А., Bulygin А.D., Geints Yu.E. Diffraction optics of a light filament generated during self-focusing of a femtosecond laser pulse in air // Atmos. Ocean. Opt. 2012. V. 25, N 2. P. 97–105.
- Talanov V.I. O samofokusirovke volnovyh puchkov v nelinejnyh sredah // Pis'ma v ZhJeTF. 1965. V. 2, issue 5. P. 218–222.
- Chiao R.Y., Garmire E., Townes C.H. Self-trapping of optical beams // Phys. Rev. Lett. 1964. V. 13. P. 479–482.
- Mikajeljan A.L. Opticheskie volnovody s peremennym pokazatelem prelomlenija // Optika i spektroskopija. 1978. V. 44, issue 2. P. 370–378.
- Mikajeljan A.L. Primenenie sloistoj sredy dlja fokusirovanija voln // Dokl. AN SSSR. 1951. V. LXXXI, N 4. P. 569–571.
- Kravcov Ju.A., Orlov Ju.I. Kaustiki, katastrofy i volnovye polja // Uspehi fiz. nauk. 1983. V. 141, issue 4. P. 591–627.
- Kandidov V.P., Shlenov S.A., Kosareva O.G. Filamentacija moshhnogo femtosekundnogo lazernogo izluchenija // Kvant. jelektron. 2009. V. 39, N 3. P. 205–228.
- Smetanina E.O., Kadan V.M., Blonskyi I.V., Kandidov V.P. Dynamic lenses in femtosecond filament // Appl. Phys. B. 2014. V. 116, N 3. P. 755–762.
- Tatarinova L.L., Garcia M.E. Exact solutions of the eikonal equations describing self-focusing in highly nonlinear geometrical optics // Phys. Rev. A. 2008. V. 78. 021806.
- Perelomov A.M., Popov V.S., Terent'ev M.V. Ionizacija atomov v peremennom jelektricheskom pole // Zh. jeksperim. i teor. fiz. 1966. V. 50, issue 5. P. 1393–1397.