Vol. 29, issue 05, article # 4

Petrova T. M., Ponomarev Yu. N., Solodov A. A., Solodov A. M., Glazkova E. A., Bakina O. V., Lerner M. I. Infrared absorption spectra of CO2, C2H4, C2H6 in nanopores of SiO2/Al2O3 aerogel. // Optika Atmosfery i Okeana. 2016. V. 29. No. 05. P. 380–385. DOI: 10.15372/AOO20160504 [in Russian].
Copy the reference to clipboard
Abstract:

Transformation of C2H4, CO2 and C2H6 absorption spectra under condition of nanoconfinement in SiO2/Al2O3 aerogel is presented for the first time. It is shown that integral intensity of confined C2H4 within 5700–6250 cm–1, CO2 within 4760–5160 cm–1 and C2H6 within 2830–3030 cm–1 are respectively by 13.3, 15, and 18 times higher than in free gas.

Keywords:

aerogel, nanopores, absorption spectra, C2H4, CO2, C2H6

References:

  1. Solodov A.A., Petrova T.M., Ponomarev Yu.N., Solodov A.M. Influence of nanoconfinement on the rotational dependence of line half-widths for 2–0 band of carbon oxide // Chem. Phys. Lett. 2015. V. 637. P. 18–21.
  2. Ponomarev Yu.N., Petrova T.M., Solodov A.M., Solodov A.A. IR spectroscopy of water vapor confined in nanoporous silica aerogel // Opt. Express. 2010. V. 18, N 25. P. 26062–26067.
  3. Ponomarev Ju.N., Petrova T.M., Solodov A.M., Solodov A.A., Daniljuk A.F. Jeksperimental'noe issledovanie vzaimodejstvija jetilena s nanoporami ajerogelej razlichnoj plotnosti metodom IK-spektroskopii // Optika atmosf. i okeana. 2010. V. 23, N 4. P. 270–273.
  4. Huber T.E., Huber C.A. Infrared Absorption of H2 Adsorbed on Porous Glass, Silica Gel, and MgO // Appl. Phys. A. 1990. V. 51, iss. 2. P. 137–140.
  5. Reta N., Michelmore A., Saint C., Voelcer N.H. Porous silicon membrane-modified electrodes for label-free voltammetric detection of MS2 bacteriophage // Biosens. Bioelectronics. 2016. V. 80, iss. 15. P. 47–53.
  6. Laborda F., Bolea E., Cepriá G., Jiménez M.S., Pérez- Arantegui J., Castillo J.R. Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples // Anal. Chim. Acta. 2016. V. 904. P. 10–32.
  7. Zhuang X., Mai Y., Wu D., Zhang F., Feng X. Two dimensional soft nanomaterials: A fascinating world of materials // Adv. Mater. 2015. V. 27, iss. 3. P. 403–427.
  8. Azzouzi S., Patra H.K., Ali M.B., Abbas M.N., Dridi C., Errachid A., Turner A.P.F. Citrate-selective electrochemical μ-sensor for early stage detection of prostate cancer // Sens. Actuators, B. 2016. V. 228, N 2. P. 335–346.
  9. Banerjee S., Kelly C., Kerry J.P., Papkovsky D.B. High throughput non-destructive assessment of quality and safety of packaged food products using phosphorescent oxygen sensors // Trends Food Sci. Technology. 2016. V. 50. P. 85–102.
  10. Chatteriee S.G., Chatteriee S., Ray A.K., Chakraborty A.K. Graphene–metal oxide nanohybrids for toxic gas sensor: A review // Sens. Actuators, B. 2015. V. 221. P. 1170–1181.
  11. Hu J., Gao F., Zhao Z., Sang S., Li P., Zhang W., Zhou X., Chen Y. Synthesis and characterization of cobalt-doped ZnO microstructures for methane gas sensing // Appl. Surf. Sci. 2016. V. 363. P. 181–188.
  12. Turner N.W., Cauchi M., Piletska E.V., Preston C., Piletsky S.A. Rapid qualitative and quantitative analysis of opiates in extract of poppy head via FTIR and chemometrics: Towards in-field sensors // Biosens. Bioelectronics. 2009. V. 24, iss. 11. P. 3322–3328.
  13. Tricoli A., Righettoni M., Teleki A. Semiconductor gas sensors: Dry synthesis and application // Angew. Chem. Int. Ed. 2010. V. 49, iss. 42. P. 7632–7659.
  14. Jeun J.H., Hong S.H. CuO-loaded nanoporous SnO2 films fabricated by anodic oxidation and RIE process and their gas sensing properties // Sens. Actuators, B. 2010. V. 151, iss. 1. P. 1–7.
  15. Bai S., Sun C., Guo T., Luo R., Lin Y., Chen A., Sun L., Zhang J. Low temperature electrochemical deposition of nanoporous ZnO thin films as novel NO2 sensors // Electrochimica Acta. 2013. V. 90. P. 530–534.
  16. Sadek A.Z., Partridge J.G., McCulloch D.G., Li Y.X., Yu X.F., Wlodarski W., Kalantar-zadeh K. Nanoporous TiO2 thin film based conductometric H2 sensor // Thin Solid Films. 2009. V. 518, iss. 4. P. 1294–1298.
  17. Wang C., Li X., Feng C., Sun Y., Lu G. Nanosheets assembled hierarchical flower-like WO3 nanostructures: Synthesis characterization, and their gas sensing properties // Sens. Actuators, B. 2015. V. 210. P. 75–81.
  18. Shaposhnik A.V., Zvjagin A.A., Korchagina S.N. Hemosorbcionnye processy pri opredelenii ammiaka poluprovodnikovym sensorom s uchastiem mikroreaktora // Sorbcionnye i hromatograficheskie processy. 2012. V. 12, issue 2. P. 261–266.
  19. Chen K.L., Jiang G.J., Chang K.W., Chen J.H., Wu C.H. Gas sensing properties of indium–gallium–zinc-oxide gas sensors in different light intensity // Anal. Chem. Res. 2015. V. 4. P. 8–12.
  20. Kundu J., Le F., Nordlander P., Halas N.J. Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates // Chem. Phys. Lett. 2008. V. 452, iss. 1–3. P. 115–119
  21. So Young Kang, Il Cheol Jeon, Kwan Kim. Infrared Absorption Enhancement at Silver Colloidal Particles // Appl. Spectrosc. 1998. V. 52, N 2. P. 278–283.
  22. Aravind P.R., Mukundan P., Pillai P.K., Warrier K.G.K. Mesoporous silica–alumina aerogels with high thermal pore stability through hybrid sol–gel route followed by subcritical drying // Micropor. Mesopor. Mat. 2006. V. 96, iss. 1–3. P. 14–20.
  23. Fenelonov V.B. Vvedenie v fizicheskuju himiju formirovanija supramolekuljarnoj struktury adsorbentov i katalizatorov. Novosibirsk: Izdatelstvo SO RAN, 2002. 414 p.
  24. Norton R.H., Beer R. New Apodizing Functions for Fourier Spectrometry // J. Opt. Soc. Amer. 1976. V. 66, iss. 3. P. 259–264.
  25. Ponomarev Ju.N., Petrova T.M., Solodov A.M., Solodov A.A. Nabljudenie zapreshhennoj polosy pogloshhenija H2 v nanoporah ajerogelja // Pis'ma v ZhJeTF. 2014. V. 99, issue 11. P. 721–723.