Vol. 29, issue 06, article # 11

Kurbatskaya L. I., Kurbatskii A. F. On the parametrization of the turbulent friction velocity for the mathematical heat-island model of the low-aspect-ratio in the stratified environment. // Optika Atmosfery i Okeana. 2016. V. 29. No. 06. P. 512–515. DOI: 10.15372/AOO20160611 [in Russian].
Copy the reference to clipboard

We examine the parameterizations of a turbulent friction velocity u* for the mathematical heat-island model of the low-aspect-ratio in the stratified environment. This study was performed to simulate the urban heat island in a calm stably stratified medium with the thermophysics inhomogeneity of the underlying surface: the unstable stratification over the localized surface heat source and the stable stratification out of it [1]. The numerical results of u* are presented with the of use the Louis’s and Paulson’s non-iteration algorithms for the quasi-steady circulation over the urban heat island.


turbulence, planetary boundary layer, urban heat island, large-scale circulation, numerical modeling


  1. Lu J., Arya P., Snyder W.H., Lawson R.E., Jr. A Laboratory Study of the Urban Heat Island in a Calm and Stably Stratified Environment. Part I and II // J. Appl. Meteorol. 1997. V. 36, N 10. P. 1377–1402.
  2. Kurbatskii A.F. Computational Modeling of the Turbulent Penetrative Convection above the Urban Heat Island in a Stably Stratified Environment // J. Appl. Meteorol. 2001. V. 40, N 10. P. 1748–1761.
  3. Louis J.-F. A parametric model of vertical eddy fluxes in the atmosphere // Bound.-Lay. Meteorol. 1979. V. 17, N 2. P. 187–202.
  4. Paulson C.A. The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Boundary Layer // J. Appl. Meteorol. 1970. V. 9. P. 857–861.
  5. Monin A.S., Obuhov A.M. Osnovnye zakonomernosti turbulentnogo peremeshivanija v prizemnom sloe atmosfery // Tr. Geofiz. in-ta AN SSSR. N 24 (151). P. 163–187.
  6. Panofsky Y.A., Tennekes Y., Lenshow D.Y., Wyngaard J.C. The characteristics of turbulent velocity components in the surface layer under convective conditions // Bound.-Lay. Meteorol. 1977. V. 11, N 3. P. 353–361.
  7. Businger J.A., Wyngaard J.C., Izumi Y., Bradley E.F. Flux profile relationship in the atmospheric surface layer // J. Atmos. Sci. 1971. V. 28, N 2. P. 181–189.
  8. Dyer A.J. A review of flux-profile relationships // Bound.-Lay. Meteorol. 1974. V. 7, N 3. P. 363–372.
  9. Andre J.C., de Moor G., Laccarere F., Therry G., du Vachat R. Modeling the 24-hour evolution of the mean and turbulent structures of the planetary boundary layer // J. Atmos. Sci. 1979. V. 35, N 10. P. 1861–1885.
  10. Duynkerke P.G.  Application of the E–e Turbulence Closure Model to the Neutral and Stable Atmospheric Boundary Layer // J. Atmos. Sci. 1988. V. 45, N 5. P. 865–879.
  11. Shlihting G. Teorija pogranichnogo sloja. M: Nauka, 1969 g.