Vol. 29, issue 09, article # 12

Kataev M. Yu., Bekerov A. A., Lukyanоv A. K. Calculation of normalized vegetation index from spectral channels of spectral radiometer MODIS. // Optika Atmosfery i Okeana. 2016. V. 29. No. 09. P. 797–801. DOI: 10.15372/AOO20160912 [in Russian].
Copy the reference to clipboard
Abstract:

The approach to normalization of the vegetation index calculated from measurements of the spectroradiometer MODIS is discusses in the paper. To do this, the normalization involves additional spectral channels of a spectroradiometer, based on the calculated cloud and snow indices allowing one to build a cloud mask and to allocate time periods of the presence of clouds. The built model for vegetation index dependency on the temperature allows further improvement of the form of time series of the vegetation index. The results of the application of the proposed approach to the real measurements are discussed in the paper.

Keywords:

vegetation index, normalization, spectroradiometer MODIS

References:

  1. Belov V.V. Ot fizicheskih osnov, teorii i modelirovanija k tematicheskoj obrabotke sputnikovyh izobrazhenij. Tomsk: Izd-vo IOA SO RAN, 2005. 265 p.
  2. Suhih V.I. Ajerokosmicheskie metody v lesnom hozjajstve i landshaftnom stroitel'stve. Joshkar-Ola: MarGTU, 2005. 392 p.
  3. Shovengerdt R.A. Distancionnoe zondirovanie. Modeli i metody obrabotki izobrazhenij. M.: Tehnosfera, 2010. 582 p.
  4. Vorob'ev O.N., Kurbanov Je.A., Lezhenin Ju.A. Distancionnyj monitoring gorodskih lesov // Vestn. Povolzhskogo gos. tehnologicheskogo un-ta. Ser.: Les. Jekologija. Prirodopol'zovanie. 2015. N 1(25). P. 5–21.
  5. Ljubimov A.V., Ksenofontov N.I., Kolesnikov Ju.I. Deshifrirovanie i interpretacija materialov ajerokosmicheskih s#emok dlja sovershenstvovanija inventarizacii osobo ohranjaemyh lesov: ucheb. posobie. SPb.: SPbLTA, 2001. 192 p.
  6. Tolpin V.A., Bartalev S.A., Burcev M.A., Efremov V.Ju., Lupjan E.A., Mazurov A.A., Matveev A.M., Proshin A.A., Flitman E.V. Ocenka sostojanija sel'skohozjajstvennyh kul'tur na osnove mezhgodovoj dinamiki s ispol'zovanie dannyh MODIS // Sovremennye problemy distancionnogo zondirovanija Zemli iz kosmosa. 2007. V. 2, issue 4. P. 380–389.
  7. Kataev M.Ju., Bekkerov A.A. Obnaruzhenie jekologicheskih izmenenij prirodnoj sredy po dannym sputnikovyh izmerenij // Optika atmosf. i okeana. 2014. V. 27, N 7. P. 652–656.
  8. Liang S., Strahler A.H., Walthall C.W. Retrieval of land surface albedo from satellite observations: A simulation study // J. Appl. Meteorol. 1999. V. 38, N 6. P. 712–725.
  9. Ineichen P., Guisan O., Perez R. Ground-reflected radiation and albedo // Solar Energy. 1990. V. 44(4). P. 207–214.
  10. Gutman G., Ignatov A. The derivation of the green vegetation fraction from NOAA/ AVHRR data for use in numerical weather prediction model // Int. J. Remote Sens. 1998. V. 19(8). P. 1533–1543.
  11. Hall D.K., Riggs G.A., Salomonson V.V., DeGirolamo N.E., Bayr K.J., Jin J.M. MODIS Snow-cover products // Remote Sens. Environ. 2002. V. 83, N 1. P. 181–194.
  12. Sirguey P., Mathieu R., Arnaud Y. Subpixel monitoring of the seasonal snow cover with MODIS at 250 m spatial resolution in the Southern Alps of New Zealand: Methodology and accuracy assessment // Remote Sens. Environ. 2009. V. 113, N 1. P. 160–181.
  13. Li W., Fang Y., Dian J., Guo M. Cloud Detection in MODIS data based on spectrum analysis // Geomatics and Information Science of Wuhan University. 2005. V. 30(5). P. 435–438.
  14. Kataev M.Ju., Bekerov A.A., Luk'janov A.K. Internet-informacionnaja sistema nakoplenija, obrabotki i analiza sputnikovyh dannyh MODIS // Dokl. TUSURa. 2015. N 1(35). P. 93–99.

Back