Vol. 29, issue 09, article # 4

Prigarin S. M. Monte Carlo simulation of the effects caused by multiple scattering of ground-based and spaceborne lidar pulses in clouds. // Optika Atmosfery i Okeana. 2016. V. 29. No. 09. P. 747–751. DOI: 10.15372/AOO20160904 [in Russian].
Copy the reference to clipboard

This paper deals with studying specific features of the laser pulse propagation and lidar return signals in remote sensing of clouds by ground-based and spaceborne lidars using Monte Carlo simulation. In particular, the paper describes the effect of "return signal sharpening" that makes a distant cloud boundary more visible. Moreover, the paper presents the results of stochastic simulation of the expanding solid torus of light that can be generated by a laser pulse in a cloud layer. A brief description of the software created by the author to simulate the lidar return signals is enclosed.


remote sensing, ground-based and spaceborne lidars, clouds, light multiple scattering, Monte Carlo simulation


  1. Bissonnette L.R., Bruscaglioni P., Ismaelli A., Zaccanti G., Cohen A., Benayahu Y., Kleiman M., Egert S., Flesia C., Schwendimann P., Starkov A., Noormohammadian M., Oppel U.G., Zege E.P., Katsev I.L., Polonsky I.N. Lidar Multiple Scattering from Clouds // Appl. Phys. B. 1995. V. 60, N 4. P. 355–362.
  2. Bruscaglioni P., Ismaelli A., Zaccanti G. Monte-Carlo calculations of LIDAR returns: procedure and results // Appl. Phys. B: Lasers Opt. 1995. V. 60, N 4. P. 325–329.
  3. Bruscaglioni P., Flesia C., Ismaelli A., Sansoni P. Multiple scattering and lidar returns // Pure Appl. Opt: J. European Opt. Soc. A. 1998. V. 7, N 6. P. 1273–1287.
  4. Klett J.D. Stable analytical inversion solution for processing lidar returns // Appl. Opt. 1981. V. 20, N 2. P. 211–220.
  5. Kunkel K.E., Weinman J.A. Monte Carlo analysis of multiply scattered lidar returns // J. Atmos. Sci. 1976. V. 33, N 9. P. 1772–1781.
  6. Lu X., Jiang Yu., Zhang X., Lu X., He Y. An algorithm to retrieve aerosol properties from analysis of multiple scattering influences on both ground-based and space-borne lidar returns // Opt. Express. V. 17, iss. 11. P. 8719–8728.
  7. Oppel U.G., Wengenmayer M., Prigarin S.M. Monte Carlo simulations of polarized CCD lidar returns // J. Atmos.  Ocean.  Opt.  2007.  V. 20,  N 12.  P. 1086–1091.
  8. Platt C.M.R. Remote Sounding of High Clouds. III: Monte Carlo Calculations of Multiple-Scattered Lidar Returns // J. Atmos. Sci. 1981. V. 38, N 1. P. 156–167.
  9. Samokhvalov I.V. Double scattering approximation of lidar equation for inhomogeneous atmosphere // Opt. Lett. 1979. V. 4, N 5. P. 12–14.
  10. Winker D.M., Poole L.R. Monte-Carlo calculations of cloud returns for ground-based and spacebased LIDARS // Appl. Phys. B: Lasers Opt. 1995. V. 60, N 4. P. 341–344.
  11. Marchuk G.I., Mihajlov G.A., Nazaraliev M.A., Darbinjan R.A., Kargin B.A., Elepov B.S. Metod Monte-Karlo v atmosfernoj optike. Novosibirsk: Nauka, 1976. 280 p.
  12. Dejrmendzhan D. Rassejanie jelektromagnitnogo izluchenija sfericheskimi polidispersnymi chasticami. M.: Mir, 1971. 303 p.
  13. Davis A.B., Cahalan R.F., Spinhirne J.D., McGill M.J., Love S.P. Off-beam lidar: an emerging technique in cloud remote sensing based on radiative Green-function theory in the diffusion domain // Phys. Chem. Earth (B). 1999. V. 24. P. 177–185.
  14. Love S.P., Davis A.B., Rohde C.A., Tellier L., Ho C. Active probing of cloud multiple scattering, optical depth, vertical thickness, and liquid water content using Wide-Angle Imaging Lidar // Proc. SPIE. 2002. V. 4815. P. 129–138.
  15. Cahalan R.F., McGill M., Kolasinski J., Varnai T., Yetzer K. THOR-Cloud thickness from offbeam lidar returns // J. Atmos. Ocean. Technol. 2005. V. 22, N 6. P. 605–627.
  16. Polonsky I.N., Love S.P., Davis A.B. The Wide-Angle Imaging Lidar (WAIL) deployment at the ARM Southern Great Plains site: Intercomparison of cloud property retrievals // J. Atmos. Ocean. Technol. 2005. V. 22, N 6. P. 628–648.
  17. Davis A.B. Multiple-scattering lidar from both sides of the clouds: addressing internal structure // J. Geophys. Res. D. 2008. V. 113, iss. 14. DOI: 10.1029/ 2007JD009666.
  18. Prigarin S.M., Aleshina T.V. Monte Carlo simulation of ring-shaped returns for CCD LIDAR systems // Russian Journal of Numerical Analysis and Mathematical Modelling. 2015. V. 30, N 4. P. 251–257.
  19. Hess M., Koepke P., Schult I. Optical properties of aerosols and clouds: the software package OPAC // Bull. Amer. Meteorol. Soc. 1998. V. 79, N 5. P. 831–844.
  20. Park J.H. Multiple scattering measurements using multistatic lidar. Thesis (Ph.D.). The Pennsylvania State University, 2008. 188 p.