Vol. 29, issue 10, article # 3

Petrova T. M., Solodov A. M., Shcherbakov A. P., Dеichuli V. M., Solodov A. A., Ponomarev Yu. N., Chesnokova T. Yu. Parameters of broadening of water molecule absorption lines by argon pressure using different profile models. // Optika Atmosfery i Okeana. 2016. V. 29. No. 10. P. 821–827. DOI: 10.15372/AOO20161003 [in Russian].
Copy the reference to clipboard
Abstract:

The absorption spectra of water vapor perturbed by Ar pressure have been investigated in the wavenumber range 6700–7650 cm–1. Room temperature spectra of water vapor have been measured by the Bruker IFS 125HR Fourier transform spectrometer with a high signal-to-noise ratio in a wide range of pressure of argon with a spectral resolution of 0.01 cm–1. The fittings with Voigt and speed-dependent Voigt profiles were performed to retrieve the H2O spectral lines parameters. It was shown that the use of the speed-dependent Voigt profile gives the best agreement with experimental data.

Keywords:

absorption line parameters, water vapor, Fourier transform spectrometer, speed-dependent Voigt profile

References:

  1. Hartmann J.-M., Boulet C., Robert D. Collisional effects on molecular spectra: Laboratory experiments and models, consequences for application. Amsterdam; Boston: Elsevier Science, 2008. 406 p.
  2. Lisak D., Cygan A., Bermejo D., Domenech J.L., Hodges J.T., Tran H. Application of the Hartmann–Tran profile to analysis of H2O spectra // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 164. P. 221–233.
  3. Ngo N.H., Lisak D., Tran H., Hartmann J.-M. An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 129. P. 89–100.
  4. Tennyson J., Bernath P.F., Campargue A., Császár A.G., Daumont L., Gamache R.R., Hodges J.T., Lisak D., Naumenko O.V., Rothman L.S., Tran H., Zobov N.F., Buldyreva J., Boone C.D., De Vizia M.D., Gianfrani L., Hartmann J.-M., McPheat R., Weidmann D., Murray J., Ngo N.H., Polyansky O.N. Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC Technical Report) // Pure Appl. Chem. 2014. V. 86, N 12. P. 1931–1943.
  5. Dicke R.H. The effect of collisions upon the Doppler width of spectral lines // Phys. Rev. 1953. V. 89, N 2. P. 472–474.
  6. Rautian S.G., Sobel'man I.I. Vlijanie stolknovenij na doplerovskoe ushirenie spektral'nyh linij // Uspehi fiz. nauk. 1966. V. 90, N 2. P. 209–236.
  7. Fano V. Pressure broadening as a prototype of relaxation // Phys. Rev. 1963. V. 131, N 1. P. 259–268.
  8. Berman P.R. Speed-dependent collisional width and shift parameters in spectral line profiles // J. Quant. Spectrosc. Radiat. Transfer. 1972. V. 12, N 9. P. 1331–1342.
  9. Раутиан С.Г. Асимптотический контур спектральной линии при малом доплеровском уширении // Оптика и спектроскопия. 2001. Т. 90, № 1. С. 47–58.
  10. Galatry L. Simultaneous effect of Doppler and foreign gas broadening on spectral lines // Phys. Rev. 1961. V. 122, N 4. P. 1218–1223.
  11. Lisak D., Havey D.K., Hodges J.T. Spectroscopic line parameters of water vapor for rotation-vibration transitions near 7800 cm–1 // Phys. Rev. A. 2009. V. 79. P. 052507-1–052507-10.
  12. Ciurylo R., Szudy J. Speed-dependent pressure broadening and shift in the soft collision approximation // J. Quant. Spectrosc. Radiat. Transfer. 1997. V. 57, N 1. P. 41–54.
  13. Boone C.D. Speed-dependent Voigt profile for water vapor in infrared remote sensing applications // J. Quant. Spectrosc. Radiat. Transfer. 2007. V. 105, N 3. P. 525–532.
  14. Network for the Detection of Atmospheric Composition Change (NDACC). URL: http://www.ndsc.ncep.noaa. gov/
  15. Ponomarev Yu.N., Solodov A.A., Solodov A.M., Petrova T.M., Naumenko O.V. FTIR spectrometer with 30 m optical cell and its applications to the sensitive measurements of selective and nonselective absorption spectra // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 177. P. 253–260.
  16. Ptashnik I.V., Klimeshina T.E., Petrova T.M., Solodov A.A., Solodov A.M. Kontinual'noe pogloshhenija vodjanogo para v polosah 2,7 i 6,25 mm pri ponizhennyh temperaturah // Optika atmosf. i okeana. 2015. V. 28, N 9. P. 772–776; Ptashnik I.V., Klimeshina T.E. Petrova T.M., Solodov A.A., Solodov A.M. Water vapor continuum absorption in the 2.7 and 6.25 mm bands at decreased temperatures // Atmos. Ocean. Opt. 2016. V. 29, N 3. P. 211–215.
  17. Petrova T.M., Solodov A.M., Solodov A.A., Lyulin O.M., Tashkun S.A., Perevalov V.I. Measurements of 12C16O2 line parameters in the 8790–8860, 9340–9650 and 11430–11505 cm–1 wavenumber regions by means of Fourier transform spectroscopy // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 124. P. 21–27.
  18. Ajzerman M.A., Braverman Je.I., Rozonojer L.I. Metod potencial'nyh funkcij v teorii obuchenija mashin. M.: Nauka, 1970. 384 p.
  19. Levin L.L. Vvedenie v teoriju raspoznavanija obrazov: ucheb. posobie. Tomsk: TGU, 2008. 97 p.
  20. Shherbakov A.P. Primenenie metodov teorii raspoznavanija obrazov dlja identifikacii linij v kolebatel'no-vrashhatel'nyh spektrah // Optika atmosf. i okeana. 1997. V. 10, N 8. P. 947–958.
  21. Bykov A.D., Naumenko O.V., Pshenichnikov A.M., Sinica L.N., Shherbakov A.P. Jekspertnaja sistema dlja identifikacii linij v kolebatel'no-vrashhatel'nyh spektrah // Optika i spektroskopija. 2003. V. 94, N 4. P. 528–537.
  22. Kruglova T.M., Shherbakov A.P. Avtomaticheskij poisk linij v molekuljarnyh spektrah na osnove metodov neparametricheskoj statistiki. Reguljarizacija v ocenke parametrov spektral'nyh linij // Optika i spektroskopija. 2011. V. 111, N 3. P. 383–386.
  23. Cygan A., Lisak D., Wojtewicz W., Domysławska J., Hodges J.T., Trawinski R.S., Ciuryło R. High-signalto-noise-ratio laser technique for accurate measurements of spectral line parameters // Phys. Rev. A. 2012. V. 85. P. 022508 (11 р.).
  24. Rothman L.S., Gordon I.E., Babikov I.E., Barbe A., Benner C.D., Bernath P.F., Birk M., Bizzocchi L., Boudon V., Brown L.R., Campargue A., Chance K., Cohen E.A., Coudert E.A., Devi V.M., Drouin B.J., Fayt A., Flaud J.-M., Gamache R.R., Harrison J.J., Hartmann J.-M., Hill C., Hodges J.T., Jacquemart D., Jolly A., Lamouroux J., Le Roy R.J., Li G., Long D.A., Lyulin O.M., Mackie C.J., Massie S.T., Mikhailenko S., Müller S.P., Naumenko O.V., Nikitin A.V., Orphal J., Perevalov V., Perrin A., Polovtseva E.R., Richard C., Smith M.A.H., Starikova E., Sung K., Tashkun S., Tennyson J., Toon G.C., Tyuterev Vl.G., Wagner G. The HITRAN 2012 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 4–50.