Correlation between the vertical distribution of tropospheric aerosol and the direction of air mass transfer at different heights is studied on the basis of regular lidar observations in Tomsk (56°N, 85°E). Joint interpretation of the data of 110 sessions of lidar measurements and simulation of 10-day back trajectories of air mass (AM) movement has shown that in 72% of observation the advection direction changes in height no more than once, and it occurs at the boundary of the main scattering layers – the boundary layer and the free troposphere. The direction changes more than once at movement of AM into the free troposphere in spring and summer (11% of observations). It seems impossible to determine the prevalent direction of transfer in the remaining 17% of observations. The change of all lidar characteristics when passing from one layer to another is observed in practically all nighttime sessions of measurements.
tropospheric aerosol, microphysics, lidars, air mass advection
1. Belan B.D. Dinamika sloja peremeshivanija po ajerozol'nym dannym // Optika atmosf. i okeana. 1994. V. 7, N 8. P. 1045–1054.
2. Panchenko M.V., Terpugova S.A. Godovoj hod soderzhanija submikronnogo ajerozolja v troposfere nad Zapadnoj Sibir'ju // Optika atmosf. i okeana. 1994. V. 7, N 8. P. 1033–1044.
3. Panchenko M.V., Terpugova S.A. Vnutrisezonnye faktory izmenchivosti harakteristik submikronnogo ajerozolja. 2. Sutochnyj hod (vertikal'nyj profil') // Optika atmosf. i okeana. 1996. V. 9, N 6. P. 735–742.
4. Panchenko M.V., Terpugova S.A. Primenenie trehslojnogo predstavlenija dlja opisanija vertikal'nogo profilja soderzhanija submikronnogo ajerozolja v nizhnej troposfere // Optika atmosf. i okeana. 1999. V. 12, N 12. P. 1093–1097.
5. Arshinov M.Ju., Belan B.D., Simonenkov D.V., Tolmachev G.N., Fofonov A.V. Organizacija monitoringa parnikovyh i okisljajushhih atmosferu komponentov nad territoriej Sibiri i nekotorye ego rezul'taty. 2. Ajerozol'nyj sostav // Optika atmosf. i okeana. 2006. V. 19, N 12. P. 1062–1067.
6. Samojlova S.V., Balin Ju.S., Kohanenko G.P., Penner I.Je. Issledovanie vertikal'nogo raspredelenija troposfernyh ajerozol'nyh sloev po dannym mnogochastotnogo lazernogo zondirovanija. Part 2. Vertikal'noe raspredelenie opticheskih harakteristik ajerozolja v vidimom diapazone // Optika atmosf. i okeana. 2009. V. 22, N 12. P. 1123–1134; Sаmоilova S.V., Bаlin Yu.S., Kоkhаnеnkо G.P., Pеnnеr I.E. Investigation of the vertical distribution of tropospheric aerosol layers from multifrequency laser sensing data. Part 2: The vertical distribution of optical aerosol characteristics in the visible region // Atmos. Ocean. Opt. 2010. V. 23, N 2. P. 95–105.
7. Boers R., Eloranta E.W., Coulter R.L. Lidar observations of mixed layer dynamics: Tests of parametrized entrainment-models of mixed layer growth rate // J. Clim. Appl. Meteorol. 1984. V. 23. P. 247–266. DOI: 10.1175/1520-0450(1984)023<0247:LOOMLD>2.0.CO;2.
8. Melfi S.H., Sphinhirne J.D., Chou S.H., Palm S.P. Lidar observations of the vertically organized convection in the planetary boundary layer over the ocean // J. Clim. Appl. Meteorol. 1985. V. 24. P. 806–821. DOI: 10.1175/1520-0450(1985)024<0806:LOOVOC>2.0.CO;2.
9. Flamant C., Pelon J., Flamant P.H., Durand P. Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary layer // Bound.-Lay. Meteorol. 1997. V. 83. P. 247–284.
10. Lammert A., Bösenberg J. Determination of the convective boundary layer height with laser remote sensing // Bound.-Lay. Meteorol. 2006. V. 119. P. 159–170.
11. Haeffelin M., Angelini F., Morille Y., Martucci G., Frey S., Gobbi G.P., Lolli S., O’Dowd C.D., Sauvage L., Xueref-Rémy I., Wastine B., Feist D.G. Evaluation of mixing-height retrievals from automatic profiling lidars and ceilometers in view of future integrated networks in Europe // Bound.-Lay. Meteorol. 2012. V. 143. P. 49–75.
12. Martucci G., Matthey R., Mitev V., Richner H. Comparison between backscatter lidar and radiosonde measurements of the diurnal and nocturnal stratification in the lower troposphere // J. Atmos. Ocean. Technol. 2007. V. 24. P. 1231–1244.
13. Jordan N.S., Hoff R.M., Bacmeister J.T. Validation of Goddard earth observing system-version 5 MERRA planetary boundary layer heights using CALIPSO // J. Geophys. Res. 2010. V. 115. D24218. DOI: 10.1029/2009JD013777.
14. Ansmann A., Bösenberg J., Chaikovsky A., Comerón A., Eckhardt S., Eixmann R., Freudenthaler V., Ginoux P., Komguem P., Linné H., Ángel López Márquez M., Matthias V., Mattis I., Mitev V., Müller D., Music S., Nickovic S., Pelon J., Sauvage L., Sobolewsky P., Srivastava M.K., Stohl A., Torres O., Vaughan G., Wandinger U., Wiegner M. Long range transport of Saharan dust to Northern Europe: The 11–16 October 2001 outbreak with EARLINET // J. Geophys. Res. 2003. V. 108. D4783. DOI: 10.1029/2003JD003757.
15. Papayannis A., Amiridis V., Mona L., Tsaknakis G., Balis D., Bösenberg J., Chaikovski A., De Tomasi F., Grigorov I., Mattis I., Mitev V., Müller D., Nickovic S., Pérez C., Pietruczuk A., Pisani G., Ravetta F., Rizi V., Sicard M., Trickl T., Wiegner M., Gerding M., Mamouri R.E., D’Amico G., Pappalardo G. Systematic lidar observations of Saharan dust over Europe in the frame of EARLINET (2000–2002) // J. Geophys. Res. 2008. V. 113. D10204. DOI: 10.1029/2007JD009028.
16. Wang X., Boselli A., D’Avino L., Pisani G., Spinelli N., Amodeo A., Chaikovsky A., Wiegner M., Nickovic S., Papayannis A., Perrone M.R., Rizi V., Sauvage L., Stohl A. Volcanic dust characterization by EARLINET during Etna’s eruptions in 2001–2002 // Atmos. Environ. 2008. V. 42. P. 893–905.
17. Navas-Guzmán F., Müller D., Bravo-Aranda J.A., Guerrero-Rascado J.L., Granados-Muñoz M.J., Pérez-Ramírez D., Olmo F.J., Alados-Arboledas L. Eruption of the Eyjafjallajökull Volcano in spring 2010: Multiwavelength Raman lidar measurements of sulphate particles in the lower troposphere // J. Geophys. Res. А. 2013. V. 118. P. 1804–1813. DOI: 10.1002/jgrd.50116.
18. Müller D., Mattis I., Ansmann A., Wandinger U., Ritter C., Kaiser D. Multiwavelength Raman lidar observations of particle growth during long-range transport of forest-fire smoke in the free trosposphere // Geophys. Res. Lett. 2007. V. 34. L05803. DOI: 10.1029/2006GL027936.
19. Amiridis V., Balis D.S., Giannakaki E., Stohl A., Kazadzis S., Koukouli M.E., Zanis P. Optical characterristics of biomass burning aerosols over Southeastern Europe determined from UV Raman lidar measurements // Atmos. Chem. Phys. 2009. V. 9. P. 2431–2440. DOI: 10.5194/acp-9-2431-2009.
20. Matthias V., Balis D., Bösenberg J., Eixmann R., Iarlori M., Komguem L., Mattis I., Papayannis A., Pappalardo G., Perrone M.R., Wang X. Vertical aerosol distribution over Europe: Statistical analysis of Raman lidar data from 10 European Aerosol Research Lidar Network (EARLINET) stations // J. Geophys. Res. 2004. V. 109. D18201. DOI: 10.1029/2004JD004638.
21. Giannakaki E., Balis D.S., Amiridis V., Zerefos C. Optical properties of different aerosol types: Seven years of combined Raman-elastic backscatter lidar measurements in Thessaloniki, Greece // Atmos. Measur. Technol. 2010. V. 3. P. 569–578. DOI: 10.5194/amt-3-569-2010.
22. Samoilova S.V., Balin Yu.S., Kokhanenko G.P., Penner I.E. Study of the tropospheric aerosol structure under changing of the air mass type from lidar observations in Tomsk // Rus. Phys. J. 2016. V. 58, N 12. P. 1811–1815. DOI: 10.1007/s11182-016-0721-z.
23. Samojlova S.V., Balin Ju.S., Kohanenko G.P., Penner I.Je. Issledovanie vertikal'nogo raspredelenija troposfernyh ajerozol'nyh sloev po dannym mnogochastotnogo lazernogo zondirovanija. Part 1. Metody vosstanovlenija opticheskih parametrov // Optika atmosf. i okeana. 2009. V. 22, N 4. P. 344–357.
24. Draxler R.R., Rolph G.D. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://ready.arl.noaa.gov/HYSPLIT.php) // NOAA Air Resources Laboratory, Silver Spring, MD. 2015.
25. Samojlova S.V. Vosstanovlenie kompleksnogo pokazatelja prelomlenija po lidarnym izmerenijam: vozmozhnosti i ogranichenija // Optika atmosf. i okeana. 2014. V. 27, N 3. P. 197–206.
26. Samoilova S.V., Sviridenkov M.A., Penner I.E. Retrieval of the particle size distribution function from the data of lidar sensing under the assumption of known refractive index // Appl. Opt. 2016. V. 55, N 28. P. 8022–8029.
27. Matvienko G.G., Belan B.D., Panchenko M.V., Sakerin S.M., Kabanov D.M., Turchinovich S.A., Turchinovich Yu.S., Eremina T.A., Kozlov V.S., Terpugova S.A., Pol’kin V.V., Yausheva E.P., Chernov D.G., Odintsov S.L., Burlakov V.D., Arshinov M.Yu., Ivlev G.A., Savkin D.E., Fofonov A.V., Gladkikh V.A., Kamardin A.P., Belan D.B., Grishaev M.V., Belov V.V., Afonin S.V., Balin Yu.S., Kokhanenko G.P., Penner I.E., Samoilova S.V., Antokhin P.N., Arshinova V.G., Davydov D.K., Kozlov A.V., Pestunov D.A., Rasskazchikova T.M., Simonenkov D.V., Sklyadneva T.K., Tolmachev G.N., Belan S.B., Shmargunov V.P., Voronin B.A., Serdyukov V.I., Polovtseva E.R., Vasil’chenko S.S., Tikhomirova O.V., Ponomarev Yu.N., Romanovskii O.A., Sinitsa L.N., Marichev V.N., Makarova M.V., Safatov A.S., Kozlov A.S., Malyshkin S.B., Maksimova T.A. Instrumentation complex for comprehensive study of atmospheric parameters // Int. J. Remote Sens. 2014. V. 35, N 15. P. 5651–5676. DOI: 10.1080/01431161.2014.945015.
28. Müller D., Mattis I., Ansmann A., Wehner B., Althausen D., Wandinger U., Dubovik O. Closure study on optical and microphysical properties of a mixed urban and Arctic haze air mass observed with Raman lidar and Sun photometer // J. Geophys. Res. 2004. V. 109. D13206. DOI: 10.1029/2003JD004200.