Vol. 34, issue 01, article # 2

Solodov A. A., Petrova T. M., Ponomarev Yu. N., Solodov A. M. Fourier transform near-IR spectroscopy of CO and CO2 confined in aerogel nanopores. // Optika Atmosfery i Okeana. 2021. V. 34. No. 01. P. 17–19. DOI: 10.15372/AOO20210102 [in Russian].
Copy the reference to clipboard
Abstract:

The 3–0 absorption band of carbon oxide and the 2 0 0 13  0 0 0 01 band of carbon dioxide, confined in aerogel, were recorded using a Bruker IFS 125HR FTIR spectrometer. The parameters of spectral lines are obtained, their dependences on rotational quantum numbers are presented. The parameters we found are compared with those for the 2–0 band of carbon oxide and the 0 0 0 11  0 0 0 01 band of carbon dioxide taken from literature.

Keywords:

CO, CO2, aerogel, FTIR spectroscopy

References:

1. Ponomarev Yu.N., Petrova T.M., Solodov A.M., Solodov A.A. IR spectroscopy of water vapor confined in nanoporous silica aerogel // Opt. Express. 2010. V. 18, N 25. P. 26062–26067.
2. Petrova T.M., Ponomarev Yu.N., Solodov A.A., Solodov A.M., Danilyuk A.F. Spectroscopic nanoporometry of aerogel // JETP Lett. 2015. V. 101. P. 65–67.
3. Solodov A.A., Petrova T.M., Ponomarev Yu.N., Solodov A.M. Influence of nanoconfinement on the rotational dependence of line half-widths for 2-0 band of carbon oxide // Chem. Phys. Lett. 2015. V. 637. P. 18–21.
4. Solodov A.A., Petrova T.M., Ponomarev Yu.N., Solodov A.M., Glazkova E.A. Rotational dependences of line half-widths for CO and CO2 confined in SiO2/Al2O3 xerogel // Mol. Phys. 2017. V. 115, N 14. P. 1708–1712.
5. Solodov A.A., Petrova T.M., Ponomarev Yu.N., Solodov A.M., Danilyuk A.F. FTIR spectroscopy of 2–0 band of carbon monoxide confined in silica aerogels with different pore sizes // Mol. Phys. 2019. V. 117, N 1. P. 67–70.
6. Hartmann J.-M., Sironneau V., Boulet C., Svensson T., Hodges J.T., Xu C.T. Collisional broadening and spectral shapes of absorption lines of free and nanopore-confined O2 gas // Phys. Rev. A. 2013. V. 87. P. 032510–1-10.
7. Hartmann J.-M., Sironneau V., Boulet C., Svensson T., Hodges J.T., Xu C.T. Infrared absorption by molecular gases as a probe of nanoporous silica xerogel and molecule-surface collisions: Low-pressure results // Phys. Rev. A. 2013. V. 87. P. 032510.
8. Hartmann J.-M., Boulet C., Vander Auwera J., El Hamzaoui H., Capoen B., Bouazaoui M. Line broadening of confined CO gas: From molecule-wall to molecule-molecule collisions with pressure // J. Chem. Phys. 2014. V. 140. P. 064302.
9. Hartmann J.-M., Vander Auwera J., Boulet C., Birot M., Dourges M.-A., Toupance T., El Hamzaoui H., Ausset P., Carre Y., Kocon L., Capoen B., Bouazaoui M. Infrared absorption by molecular gases to probe porous materials and comparisons with other techniques // Micropor. Mesopor. Mater. 2017. V. 237. P. 31–37.
10. Svensson T., Adolfsson E., Burresi M., Savo R., Xu C.T., Wiersma D.S., Svanberg S. Pore size assessment based on wall collision broadening of spectral lines of confined gas: Experiments on strongly scattering nanoporous ceramics with fine-tuned pore sizes // Appl. Phys. B. 2013. V. 110, N 2. P. 147–154.
11. Svensson T., Lewander M., Svanberg S. Laser absorption spectroscopy of water vapor confined in nanoporous alumina: Wall collision line broadening and gas diffusion dynamics // Opt. Express. 2010. V. 18, N 16. P. 16460–16473.
12. Solodov A.A., Petrova T.M., Ponomarev Yu.N., Solodov A.M., Shalygin A.S. Vrashchatel'naya zavisimost' polushirin linij fundamental'noj polosy 0 0 0 11 –0 0 0 01 uglekislogo gaza, nahodyashchegosya v nanoporah aerogelya: novye izmereniya // Optika atmosf. i okeana. 2020. V. 33, N 7. P. 505–508.
13. Gordon I.E., Rothman L.S., Hill C., Kochanov R.V., Tan Y., Bernath P.F., Birk M., Boudon V., Chance K.V., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Perevalov V.I., Perrin A., Shine K.P., Smith M.-A.H., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Barbe A., Császár A.G., Devi V.M., Furtenbacher T., Harrison J.J., Hartmann J.-M., Jolly A., Johnson T.J., Karman T., Kleiner I., Kyuberis A.A., Loos J., Lyulin O.M., Massie S.T., Mikhailenko S.N., Moazzen-Ahmadi N., Müller H.S.P., Naumenko O.V., Nikitin A.V., Polyansky O.L., Rey M., Rotger M., Sharpe S.W., Sung K., Starikova E., Tashkun S.A., Auwera J. Vander, Wagner G., Wilzewski J., Wcisło P., Yu S., Zak E.J. The HITRAN 2016 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203. P. 3–69.
14. Ngo N.H., Landsheere X., Pangui E., Morales S.B., Tran H., Hartmann J.-M. Self-broadening and-shifting of very intense lines of the 1-0 band of 12C16O // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 149. P. 285–290.
15. Toth R.A., Brown L.R., Miller C.E., Malathy V., Devi D., Benner C. Self-broadened widths and shifts of 12C16O2: 4750–7000 cm-1 // J. Mol. Spectrosc. 2006. V. 239. P. 243–271.