We analyze the remote sensing reflectance spectra of seawater measured from the shipboard in the area of the Urals oil spill in the form of emulsion and individual films on the sea surface. The pollution was detected in the Bering Sea near Navarin Cape on August 4, 2013, during the voyage of the training ship "Professor Khljustin". In situ data from flow-through fluorometric measurements of the chlorophyll a and colored dissolved organic matter concentrations at a depth of 4 m, not influenced by contamination detected, were also used. The regression relations between remote and in situ measurements in clean and oil-polluted waters are analyzed. A preliminary version of the technique for detecting oil pollution on the sea surface, which is in emulsified form and in the form of small films of about 1 m2 in area, is developed on the basis of remote measurements of the seawater spectra.
ocean optics, remote sensing reflectance, oil spill, chlorophyll a, dissolved organic matter, emulsion, the Bering Sea
1. Liu P., Zhao C., Li X., He M., Pichel W. Identification of ocean oil spills in SAR imagery based on fuzzy logic algorithm // Int. J. Remote Sens. 2010. V. 31, iss. 17–18. P. 4819–4833. DOI: 10.1080/01431161.2010.485147.
2. URL: https: // earth.esa.int / documents / 10174 / 1598482 /GEN49.pdf (last access: 5.10.2020).
3. Galierikova A., Materna M. World seaborne trade with oil: One of main cause for oil spills? // Transport. Res. Procedia. 2020. V. 44. P. 297–304. DOI: 10.1016/j.trpro.2020.02.039.
4. Prabowo A.R., Bae D.M. Environmental risk of maritime territory subjected to accidental phenomena: Correlation of oil spill and ship grounding in the Exxon Valdez's case // Results Eng. 2019. V. 4. P. 100035. DOI: 10.1016/j.rineng.2019.100035.
5. National Research Council 2003. Oil in the Sea III: Inputs, Fates, and Effects. Washington, DC: The National Academies Press, 265 p. DOI: 10.17226/10388.
6. Aerokosmicheskij monitoring ob"ektov neftegazovogo kompleksa / (sost.). V.G. Bondur. M.: Nauchnyj mir, 2012. 558 p.
7. Brekke C., Solberg A.H.S. Oil spill detection by satellite remote sensing // Remote Sens. Environ. 2005. V. 95, iss. 1. P. 1–13. DOI: 10.1016/j.rse.2004.11.015.
8. Chaudhary V., Kumar S. Marine oil slicks detection using spaceborne and airborne SAR data // Adv. Space Res. 2020. V. 66, iss.4. P. 854–872. DOI: 10.1016/j.asr.2020.05.003.
9. Remote sensing of ocean colour in coastal, and other optically-complex,waters / S. Sathyendranath (ed.). Dartmouth: IOCCG, 2000. 140 p. DOI: 10.25607/OBP-95.
10. URL: https://mdacorporation.com/docs/default-source/product-spec-sheets/geospatial-services/radarsat-1-pricing-information.pdf (last access: 10.09.2020).
11. Bonn agreement aerial operations handbook. URL: https://www.bonnagreement.org/publications (last access: 10.09.2020).
12. Leifer I., Luyendyk B., Broderick K. Tracking an oil slick from multiple natural sources, Coal Oil Point, California // Marine Petrol. Geology. 2006. V. 23, iss. 5. P. 621–630. DOI: 10.1016/j.marpetgeo.2006.05.001.
13. Salyuk P.A., Doroshenkov I.M., Bukin O.A., Sokolova E.B., Baulo E.N. Izmeneniya svojstv fluorestsentsii morskoj vody pri ee peremeshivanii s neft'yu // Optika atmosf. i okeana. 2014. V. 27, N 5. P. 443–448; Saluk P.A., Doroshenkov I.M., Bukin O.A., Sokolova E.B., Baulo E.N. Change of seawater fluorescence properties when mixing with crude oil // Atmos. Ocean. Opt. 2014. V. 27, N 5. P. 438–443. DOI: 10.1134/S102485601405011X.
14. Byfield V., Boxall S. Thickness estimates and classification of surface oil using passive sensing at visible and near-infrared wavelengths // IEEE. 1999. P. 1475–1477. DOI: 10.1109/IGARSS. 1999.771992.
15. Lu Y., Li X., Tian Q., Zheng G., Sun S., Liu Y., Yang Q. Progress in marine oil spill optical remote sensing: Detected targets, spectral response characteristics, and theories // Marine Geodesy. 2013. V. 36, N 3. P. 334–346. DOI: 10.1080/01490419.2013.793633.
16. Quinn M.F., Al-Otaibi A.S., Sethi P.S., Al-Bahrani F., Alameddine O. Measurement and analysis procedures for remote identification of oil spills using a laser fluorosensor // Int. J. Remote Sens. 1994. V. 15, N 13. P. 2637–2658. DOI: 10.1080/01431169408954272.
17. Mueller J.L., Morel A., Frouin R., Davis C., Arnone R., Carder K., Lee Z.P., Steward R.G., Hooker S., Mobley C.D., McLean S., Holben B., Miller M., Pietras C., Knobelspiesse K.D., Fargion G.S., Porter J., Voss K. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4. V. III: Radiometric Measurements and Data Analysis Protocols. Greenbelt: National Aeronautical and Space administration, 2003. 73 p.
18. Mobley C.D. Estimation of the remote-sensing reflectance from above-surface measurements // Appl. Opt. 1999. V. 38, N 36. P. 7442. DOI: 10.1364/AO.38.007442.
19. Massi L., Maselli F., Rossano C., Gambineri S., Chatzinikolaou E., Dailianis T., Arvanitidis C., Nuccio C., Scapini F., Lazzara L. Reflectance spectra classification for the rapid assessment of water ecological quality in Mediterranean ports // Oceanologia. 2019. V. 61, N 4. P. 445–459. DOI: 10.1016/j.oceano.2019.04.001.
20. Osadchy V.Y., Shifrin K.S., Gurevich I.Y., Jaffe J.S. Remote sensing and measurement of the thickness of oil films on the sea surface using reflectivity contrast // Proc. SPIE. 1994. P. 747–758. DOI: 10.1117/12.190121.
21. Palombi L., Cecchi G., Guzzi D., Lognoli D., Nardino V., Pippi I., Raimondi V. Passive remote sensing of solar-induced fluorescence spectra of crude oil // Int. J. Remote Sens. 2012. V. 33, N 21. P. 6695–6709. DOI: 10.1080/01431161.2012.692835.
22. Byfield V. Optical remote sensing of oil in the marine environment: Doctoral dissertation. England: University of Southampton, 1998. URL: https://www.researchgate.net/profile/Valborg_Byfield/publication/35478105_Optical_remote_sensing_of_oil_in_the_marine_environment/links/0c9605358c5d8e498a000000.pdf (last access: 10.09.2020).
23. Mol'kov A.A., Kapustin I.A., Ermoshkin A.V., Ermakov S.A. Distantsionnye metody opredeleniya tolshchiny plenok nefti i nefteproduktov na morskoj poverhnosti // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2020. V. 17, N 3. P. 9–27. DOI: 10.21046/2070-7401-2020-17-3-9-27.
24. Salyuk P.A., Styopochkin I.E., Golik I.A., Bukin O.A., Pavlov A.N., Aleksanin A.I. Razrabotka empiricheskih algoritmov vosstanovleniya kontsentratsii hlorofilla a i okrashennyh rastvorennyh organicheskih veshchestv dlya dal'nevostochnyh morej iz distantsionnyh dannyh po tsvetu vodnoj poverhnosti // Issledovaniya Zemli iz kosmosa. 2013. N 3. P. 45–57. DOI: 10.7868/S0205961413030044.
25. Salyuk P.A., Stepochkin I.E., Bukin O.A., Sokolova E.B., Mayor A.Y., Shambarova J.V., Gorbushkin A.R. Determination of the chlorophyll a concentration by MODIS-Aqua and VIIRS satellite radiometers in Eastern Arctic and Bering Sea // Izvestiya, Atmospheric and Oceanic Physics. 2016. V. 52, N 9. P. 988–998. DOI: 10.1134/S0001433816090206.
26. Bioucas-Dias J.M., Plaza A., Camps-Valls G., Scheunders P., Nasrabadi N., Chanussot J. Hyperspectral remote sensing data analysis and future challenges // IEEE Geosc. Remote Sens. 2013. V. 1, N 2. P. 6–36. DOI: 10.1109/MGRS.2013.2244672.
27. Siegel D.A., Wang M., Maritorena S., Robinson W. Atmospheric correction of satellite ocean color imagery: The black pixel assumption // Appl. Opt. 2000. V. 39, N 21. P. 3582. DOI: 10.1364/AO.39.003582.
28. O'Reilly J.E., Werdell P.J. Chlorophyll algorithms for ocean color sensors – OC4, OC5 & OC6 // Remote Sens. Environ. 2019. V 229. P. 32–47. DOI: 10.1016/j.rse.2019.04.021.
29. Leifer I., Lehr W.J., Simecek-Beatty D., Bradley E., Clark R., Dennison P., Hu Y., Matheson S., Jones C.E., Holt B., Reif M., Roberts D.A., Svejkovsky J., Swayze G., Wozencraft J. State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill // Remote Sens. Environ. 2012. V. 124. P. 185–209. DOI: 10.1016/j.rse.2012.03.024.