Vol. 34, issue 02, article # 1

Apeksimov D. V., Geints Yu. E., Zemlyanov A. A., Iglakova A. N., Kabanov A. M., Kuchinskaya O. A., Matvienko G. G., Minina O. V., Oshlakov V. K., Petrov A. V. Spatial structure of femtosecond laser radiation during filamentation in air. // Optika Atmosfery i Okeana. 2021. V. 34. No. 02. P. 81–87. DOI: 10.15372/AOO20210201 [in Russian].
Copy the reference to clipboard
Abstract:

The results of experimental and theoretical studies of the evolution of the small-scale transverse structure of high-power femtosecond laser radiation propagating in air in the multiple filamentation mode are presented. It has been found that the presence of intensity inhomogeneities in the initial transverse profile of a laser beam leads to the formation of high-intensity light channels due to the Kerr-induced self-focusing effect. When the power in these channels exceeds a certain threshold value (the critical power), the filamentation in these structures is implemented. Parameters of these light channels are theoretically estimated on the basis of the diffraction-ray model of single filamentation. It is shown that the initial radius of intensity inhomogeneities in the transverse profile of a laser beam with a centimeter radius and subterawatt power is of characteristic value of several millimeters.

Keywords:

femtosecond laser pulse, air, filamentation, light channels, diffraction-ray tube

References:

1. Self-focusing: Past and Present. Fundamentals and Prospects / R.W. Boyd, S.G. Lukishova, Y.R. Shen (eds.). Berlin: Springer, 2009. 605 р.
2. Daigle J.-F., Kosareva O.G., Panov N.A., Wang T.-J., Hosseini S., Yuan S., Roy G., Chin S.L. Formation and evolution of intense, post-filamentation, ionization-free low divergence beams // Opt. Commun. 2011. V. 284. P. 3601–3606.
3. Méchain G., Couairon A., André Y.-B., D’Amico C., Franco M., Prade B., Tzortzakis S., Mysyrowicz A., Sauerbrey R. Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization // Appl. Phys. B. 2004. V. 79, iss. 3. P. 379–382.
4. Mechain G., D'Amico C., Andre Y.-B., Tzortzakis S., Franco M., Prade B., Mysyrowicz A., Couairon A., Salmon E., Sauerbrey R. Range of plasma filaments created in air by a multi-terawatt femtosecond laser // Opt. Commun. 2005. V. 247. P. 171–180.
5. Durand M., Houard A., Prade B., Mysyrowicz A., Durécu A., Moreau B., Fleury D., Vasseur O., Borchert H., Diener K., Schmitt R., Théberge F., Chateauneuf M., Daigle J.-F., Dubois J. Kilometer range filamentation // Opt. Express. 2013. V. 21. P. 26836–26845.
6. Apeksimov D.V., Zemlyanov A.A., Iglakova A.N., Kabanov A.M., Kuchinskaya O.I., Matvienko G.G., Oshlakov V.K., Petrov A.V., Sokolova E.B. Lokalizovannye svetovye struktury s vysokoj intensivnost'yu pri mnozhestvennoj filamentatsii femtosekundnogo impul'sa titan-sapfirovogo lazera na vozdushnoj trasse // Optika atmosf. i okeana. 2017. V. 30, N 11. P. 910–914; Apeksimov D.V., Zemlyanov A.A., Iglakova A.N., Kabanov A.M., Kuchinskaya O.I., Matvienko G.G., Oshlakov V.K., Petrov A.V., Sokolova E.B. Localized high-intensity light structures during multiple filamentation of Ti:Sapphire-laser femtosecond pulses along an air path // Atmos. Ocean. Opt. 2018. V. 31, N 2. Р. 107–111.
7. Bespalov V.I., Litvak A.G., Talanov V.I. Samovozdejstvie elektromagnitnyh voln v kubichnyh izotropnyh sredah // Nelinejnaya optika. Novosibirsk: Nauka, 1968. P. 428–463.
8. Apeksimov D.V., Gejnts Yu.E., Zemlyanov A.A., Kabanov A.M., Matvienko G.G., Oshlakov V.K. Filamentatsiya femtosekundnyh lazernyh impul'sov v vozduhe / pod red. A.A. Zemlyanova. Tomsk: Izd-vo IOA SO RAN, 2017. 162 p.
9. Kandidov V.P., Shlenov S.A., Kosareva O.G. Filamentatsiya moshchnogo femtosekundnogo lazernogo izlucheniya // Kvant. elektron. 2009. V. 39, N 3. P. 205–228.
10. Gejnts Yu.E., Golik  S.S., Zemlyanov A.A., Kabanov A.M., Petrov A.V. Mikrostruktura oblasti mnozhestvennoj filamentatsii femtosekundnogo lazernogo izlucheniya v tverdom dielektrike // Kvant. elektron. 2016. V. 46, N 2. P. 133–141.
11. Apeksimov D.V., Golik S.S., Zemlyanov A.A., Iglakova A.N., Kabanov A.M., Kuchinskaya O.I., Matvienko G.G., Oshlakov V.K., Petrov A.V., Sokolova E.B. Mnozhestvennaya filamentatsiya kollimirovannogo lazernogo izlucheniya v vode i stekle // Optika atmosf. i okeana. 2015. V. 28, N 11. P. 972–978; Apeksimov D.V., Golik S.S., Zemlyanov A.A., Iglakova A.N., Kaba­nov A.M., Kuchinskaya O.I., Matvienko G.G., Oshlakov V.K., Petrov A.V., Sokolova E.B. Multiple filamentation of collimated laser radiation in water and glass // Atmos. Ocean. Opt. 2016. V. 29, N 2. P. 135–140.
12. Geints Yu.E., Zemlyanov A.A., Minina O.V. Difraktsionno-luchevaya optika filamentatsii: I. Formalizm difraktsionnyh luchej i svetovyh trubok // Optika atmosf. i okeana. 2018. V. 31, N 5. P. 364–371; Geints Yu.E., Zemlyanov A.A., Minina O.V. Diffraction-beam optics of filamentation: I – Formalism of diffraction beams and light tubes // Atmos. Ocean. Opt. 2018. V. 31, N 6. Р. 611–618.
13. Rautian S.G. Kvaziluchevye trubki // Opt. i spektroskop. 1999. V. 87, N 3. P. 494–498.
14. Apeksimov D.V., Zemlyanov A.A., Iglakova A.N., Kabanov A.M., Kuchinskaya O.I., Matvienko G.G., Oshlakov V.K., Petrov A.V. Mnozhestvennaya filamentatsiya lazernyh puchkov razlichnogo radiusa v vozduhe na 150-metrovoj trasse // Optika atmosf. i okeana. 2016. V. 29, N 1. P. 51–55; Apeksimov D.V., Zemlyanov A.A., Iglakova A.N., Kabanov A.M., Kuchinskaya O.I., Matvienko G.G., Oshlakov V.K., Petrov A.V. Multiple filamentation of laser beams of different diameters in air along a 150-meter path // Atmos. Ocean. Opt. 2016. V. 29, N 3. P. 263–266.
15. Braun A., Korn G., Liu X., Du D., Squier J., Mourou G. Self-channeling of high-peak-power femtosecond laser pulses in air // Opt. Lett. 1995. V. 20, iss. 1. P. 73–75.
16. Nibbering E.T.J., Curley P.F., Grillon G., Prade B.S., Franco M.A., Salin F., Mysyrowicz A. Conical emission from self-guided femtosecond pulses in air // Opt. Lett. 1996. V. 21, iss. 1. P. 62–64.
17. Zemlyanov A.A., Geints Yu. E., Minina O.V. Otsenka harakteristik oblasti mnozhestvennoj filamentatsii femtosekundnyh lazernyh impul'sov v vozduhe na osnove modeli odinochnoj filamentatsii // Optika atmosf. i okeana. 2019. V. 32, N 8. P. 601–608; Zemlyanov A.A., Geints Yu. E., Minina O.V. Еstimation of the characteristics of the domain of multiple filamentation of femtosecond laser pulses in air based on the single filamentation model // Atmos. Ocean. Opt. 2020. V. 33, N 2. Р. 117–123.
18. Geints Yu.E., Minina O.V., Zemlyanov A.A. Diffraction-ray tubes analysis of ultrashort high-intense laser pulse filamentation in air // J. Opt. Soc. Am. B. 2019. V. 36, N 12. P. 3209–3217.