Vol. 34, issue 02, article # 3

Rodimova O. B., Klimeshina T. E. Foreign-continuum absorption in the wings of the IR H2O bands. // Optika Atmosfery i Okeana. 2021. V. 34. No. 02. P. 93–100. DOI: 10.15372/AOO20210203 [in Russian].
Copy the reference to clipboard
Abstract:

The H2O foreign-continuum absorption in the IR region is regarded according to the asymptotic line wing theory presenting absorption as a sum of the individual line absorption coefficients with a special line shape at far distances from the line center. The line shape parameters pertaining to quantum and classical Н2О–N2 interaction potentials are found as a result of fitting the experimental absorption data in the 4200–5000 cm-1 spectral interval and the data on the temperature dependence of the second virial coefficient. This line shape is used for calculation of the continuum absorption in the 1000–10000 cm-1 region.

Keywords:

water vapor continuum, water-nitrogen continuum absorption, spectral line wings, second virial coefficient

References:

1. Ptashnik I.V., Shine K.P., Vigasin A.A. Water vapour self-continuum and water dimers: 1. Analysis of recent work // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 1286–1303. 
2. Shine K.P., Ptashnik I.V., Radel G. The water vapour continuum: Brief history and recent developments // Surveys in Geophysics 2012. V. 33. N 3–4. P. 535–555.
3. Hartmann J.-M., Tran H., Armante R., Boulet C., Campargue A., Forget F., Gianfrani L., Gordon I., Guerlet S., Gustafsson M., Hodges J.T., Kassi S., Lisak D., Thibault F., Toon G.C. Recent advances in collisional effects on spectra of molecular gases and their practical consequences // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 213. P. 178–227.
4. Shine K.P., Campargue A., Mondelain D., McPheat R.A., Ptashnik I.V., Weidmann D. The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases // J. Mol. Spectrosc. 2016. V. 327. P. 193–208.
5. Lechevallier L., Vasilchenko S., Grilli R., Mondelain D., Romanini1 D., Campargue A. The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 mm // Atmos. Meas. Tech. 2018. V. 11. P. 2159–2171.
6. Ptashnik I., Klimeshina T.E., Solodov A.A., Vigasin A.A. Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 mm bands // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 228. P. 97–05.
7. Odintsova T., Tretyakov M.Yu., Zibarova A.O., Pirali O., Roy P., Campargue A. Far-infrared self-continuum absorption of H216O and H218O (15–500 cm-1) // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 227. P. 1900–1909.
8. Ptashnik I.V., Petrova T.M., Ponomarev Yu.N., Shine K.P., Solodov A.A., Solodov A.M. Near-infrared water vapour self-continuum at close to room temperature // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 120. P. 23–25.
9. Klimeshina  T.E., Rodimova O.B. Raschet kontinual'nogo pogloshcheniya N2O v IK-diapazone na osnove izmerenij Bercha // Optika atmosf. i okeana. 2019. V. 32, N 8. P. 628–632.
10. Burch D.E., Gryvnak D.A. Continuum absorption by H2O vapor in the infrared and millimeter regions / A. Deepak, T.D. Wilkerson, L.H. Ruhnke (eds.) // Atmospheric water vapor. New York, London, Toronto, Sydney, San Francisco: Academic Press, 1980. P. 47–76.
11. Burch D.E. Continuum absorption by atmospheric H2O // Proc. SPIE. 1981. V. 277. P. 28–39.
12. Burch D.E., Alt R.L. Continuum absorption by H2O in the 700–1200 cm-1 and 2400–2800 cm-1 windows // Report AFGL-TR-84-0128. 1984. 31 p.
13. Vasilchenko S., Campargue A., Kassi S., Mondelain D. The water vapour self- and foreign-continua in the 1.6 mm and 2.3 mm windows by CRDS at room temperature // J. Geophys. Res.: Atmos. 2019. V. 227. P. 230–238.
14. Mondelain D., Vasilchenko S., Cermak P., Kassi S., Campargue A. The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 mm // Phys. Chem. Chem. Phys. 2015. V. 17. P. 17762–17770.
15. Burch D.E. Absorption by H2O in narrow windows between 3000–4200 cm-1 // Report AFGL-TR-85-0036. 1985. 37 p.
16. Baranov Y.I. The continuum absorption in H2O + N2 mixtures in the 2000–3250 cm-1 spectral region at temperatures from 326 to 363 K // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 2281–2286.
17. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements // Philos. Trans. R. Soc. A. 2012. V. 370. P. 2557–2577.
18. Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. Absorption of infrared radiant energy by CO2 and H2O. IV. Shapes of collision-broadened CO2 lines // J. Opt. Soc. Amer. 1969. V. 59, N 3. P. 267–280.
19. Clough S.A., Kneizys F.X., Davies R.W. Line shape and the water vapor continuum // Atmos. Res. 1989. V. 23, iss. 3–4. P. 229–241.
20. Ma Q., Tipping R.H., Leforestier C. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines // J. Chem. Phys. 2008. V. 128, N 12. P. 124313.
21. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. Kontur spektral'noj linii i mezhmolekulyarnoe vzaimodejstvie. Novosibirsk: Nauka, 1986. 216 p.
22. Tvorogov S.D., Rodimova O.B. Stolknovitel'nyj kontur spektral'nyh linij. Tomsk: Izd-vo IOA SO RAN, 2013. 196 p.
23. Klimeshina T.E., Bogdanova Yu.V., Rodimova O.B. Kontinual'noe pogloshchenie vodyanym parom v oknah prozrachnosti atmosfery 8–12 и 3–5 mm // Optika atmosf. i okeana. 2011. V. 24, N 9. P. 765–769; Klimeshina T.E., Bogdanova Yu.V., Rodimova O.B. Continuum absorption by water vapor in the 8–12 and 3–5 mm atmospheric transparency windows // Atmos. Ocean. Opt. 2012. V. 25, N 1. P. 71–76.
24. Tulegenov A.S., Wheatley R.J., Hodges M.P., Harvey A.H. Intermolecular potential and second virial coеfficient of the water–nitrogen complex // J. Chem. Phys. 2007. V. 126, iss. 9. P. 094305-1–11.
25. Brown A., Tipping R.H. Collision-induced absorption in dipolar molecule — homonuclear diatomic pairs / C. Camy-Peyret, A.A. Vigasin (eds.) // Proc. NATO. Dordrecht: Kluwer, 2003. P. 93–99.
26. Mondelain D., Vasilchenko S., Čermák P., Kassi S., Campargue A. The CO2 absorption spectrum in the 2.3 mm transparency window by high sensitivity CRDS: (II) Self-absorption continuum // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 187. P. 38–43.
27. Tonkov M.V., Filippov N.N., Bertsev V.V., Bouanich J.P., Nguyen Van-Thanh, Brodbeck C., Hartmann J.M., Boulet C., Thibault F., Le Doucen R. Measurements and empirical modeling of pure CO2 absorption in the 2.3-mm region at room temperature: Far wings, allowed and collision-induced bands // Appl. Opt. 1996. V. 35, N 24. P. 4863–4870.
28. Tipping R.H., Ma Q. Theory of the water vapor continuum and validations // Atmos. Res. 1995. V. 36. P. 69–94.
29. Rodimova O.B. Kontinual'noe pogloshchenie v IK-spektre uglekislogo gaza i vodyanogo para // Optika atmosf. i okeana. 2018. V. 31, N 8. P. 595–600; Rodimova O.B. Carbon dioxide and water vapor continuum absorption in the infrared spectral region // Atmos. Ocean. Opt. 2018. V. 31, N 6. P. 564–569.
30. Birk M., Wagner G., Loos J., Shine K.P. 3 mm water vapor self- and foreign-continuum: New method for determination and new insights into the self-continuum // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 253. P. 107134-1–22.