Vol. 34, issue 04, article # 2

Starikov V. I., Mikhailenko S. N. Nonpolynomial representation of N2-, O2-, air-, and self-broadening coefficients of ozone lines. // Optika Atmosfery i Okeana. 2021. V. 34. No. 04. P. 245–253. DOI: 10.15372/AOO20210402 [in Russian].
Copy the reference to clipboard

The parameters of a nonpolynomial analytical model γ (sur) are determined from the fitting of the known experimental data on the N2-, O2-, air-, and self-broadening coefficients of the ozone absorption lines. The model gives a finite value for the coefficients γ in asymptotic. The average accuracy of experimental data description is better than 3% for several thousand lines with quantum numbers up to J = 60. The results of the calculations based on the model suggested are compared to the results obtained using polynomial representations for the broadening coefficients.


ozone molecule, spectral line broadening, nonpolynomial representation


1. Mihajlenko S.N. Issledovanie infrakrasnyh spektrov pogloshcheniya molekuly ozona s 2000 po 2015 year // Optika atmosf. i okeana. 2015. V. 28, N 7. P. 587–607.
2. Smith M.A.H., Rinsland C.P., Devi V.M. Measurements of self-broadening of infrared absorption lines of ozone // J. Mol. Spectrosc. 1991. V. 147, N 1. P. 142–154.
3. Wagner G., Birk M., Schreier F, Flaud J.-M. Spectroscopic database for ozone in the fundamental spectral regions // J. Geophys. Res. 2002. V. 107, N D22. 4626. P. 10-1–18.4. Buldyreva J, Lavrent’eva N.N., Starikov V.I. Collisional Line Broadening and Shifting of Atmosphyric Gase. A practical Guide for Line Shape Modeling by Current Semi-classical Approaches. London: Imperial College Press, 2010. 292 p.
5. Starikov V.I. Analiticheskoe predstavlenie dlya koeffitsientov ushireniya linij pogloshcheniya ozona davleniem kisloroda, vozduha i sobstvennym davleniem // Optika atmosf. i okeana. 2006. V. 19, N 8. P. 708–712.
6. Starikov V.I. Vychislenie i analiticheskoe predstavlenie koeffitsientov ushireniya spektral'nyh linij ozona sobstvennym davleniem i davleniem vozduha // Opt. i spektroskop. 2011. V. 110, N 3. P. 374–384.
7. Claveau C. Temperature dependence of nitrogen and oxygen-broadening of the 16O3 ν1 band // Mol. Phys. 2011. V. 109, N 12. P. 1599–1606.
8. Larsen R.W, Nicolaisen F.M., Sørensen G.O. Determination of self-, air-, and oxygen-broadening coefficients of pure rotational absorption lines of ozone and of their temperature dependencies // J. Mol. Spectrosc. 2001. V. 210, N 2. P. 259–270.
9. Priem D., Colmont J.M., Rohart F., Wlodarczak G., Gamache R.R. Relaxation and lineshape of the 500.4-GHz line of ozone perturbed by N2 and O2 // J. Mol. Spectrosc. 2000. V. 204, N 2. P. 204–215.
10. Rohart F., Wlodarczak G., Colmont J.M., Cazzoli G., Dore L,, Puzzarini C. Galatry versus speed-dependent Voigt profiles for millimeter lines of O3 in collision with N2 and O2 // J. Mol. Spectrosc. 2008. V. 251, N 1–2. P. 282–292.
11. Colmont J.M., Bakri B., Rohart F., Wlodarczak G., Demaison J., Cazzoli G., Dore L., Puzzarini C. Intercomparison between ozone-broadening parameters retrieved from millimetre-wave measurements by using different techniques // J. Mol. Spectrosc. 2005. V. 231, N 2. P. 171–187.
12. Yamada M.M., Amano T. Pressure broadening measurement of submillimeter-wave lines of O3 // J. Quant. Spectrosc. Radiat. Transfer. 2005. V. 95, N 2. P. 221–230.
13. Margolis J.S. N2 broadening parameters of ozone at 9.6 mm // J. Quant. Spectrosc. Radiat. Transfer. 1983. V. 29, N 6. P. 539–542.
14. Hoell J.M., Harward C.N., Bair C.H., Williams B.S. Ozone air broadening coefficients in the 9 μm region // Proc. SPIE. 1981. DOI: 10.1117/12.932072.
15. Bouazza S., Barbe A., Plateaux J.J., Rosenmann L., Hartmann J.M., Camy-Peyret C., Flaud J.M., Gamache R.R. Measurements and calculations of room-temperature ozone line-broadening by N2 and O2 in the ν1 + ν3 band // J. Mol. Spectrosc. 1993. V. 157, N 2. P. 271–289.
16. Barbe A., Regalia L., Plateaux J.J., von der Heyden P., Tomas X. Temperature dependence of N2 and O2 broadening coefficients of ozone // J. Mol. Spectrosc. 1996. V. 180, N 1. P. 175–182.
17. Drouin B.J., Gamache R.R. Temperature dependent air-broadened linewidths of ozone rotational transitions // J. Mol. Spectrosc. 2008. V. 251, N 1–2. P. 194–202.
18. Drouin B.J., Fischer J., Gamache R.R. Temperature dependent pressure induced lineshape of O3 rotational transitions in air // J. Quant. Spectrosc. Radiat. Transfer. 2004. V. 83, N 1. P. 63–81.
19. Devi V.M., Benner D.C., Smith M.A.H., Rinsland C.P. Air-broadening and shift coefficients of O3 lines in the ν2 band and their temperature dependence // J. Mol. Spectrosc. 1997. V. 182, N 2. P. 221–238.
20. Smith M.A.H., Devi V.M., Benner D.C., Rinsland C.P. Temperature dependence of air-broadening and shift coefficients of O3 lines in the ν1 band // J. Mol. Spectrosc. 1997. V. 182, N 2. P. 239–259.
21. Meunier C., Marche P., Barbe A. Intensities and air broadening coefficients of O3 in the 5- and 3-μm regions // J. Mol. Spectrosc. 1982. V. 95, N 2. P. 271–275.
22. Lynch R., Gamache R.R., Neshyba S.P. Fully complex implementation of the Robert-Bonamy formalism: Half widths and line shifts of H2O broadened by N2 // J. Chem. Phys. 1996. V. 105, N 14. P. 5711–5721.
23. Guinet M., Mondelain D., Janssen C., Camy-Peyret C. Laser spectroscopic study of ozone in the 100 ← 000 band for the SWIFT instrument // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, N 7–8. P. 961–972.