Vol. 34, issue 05, article # 2

Lavrentieva N. N., Dudaryonok A. S. Calculation of self- and air-broadening coefficients of nitrogen dioxide lines. // Optika Atmosfery i Okeana. 2021. V. 34. No. 05. P. 323–328. DOI: 10.15372/AOO20210502 [in Russian].
Copy the reference to clipboard

Self- and air-broadening coefficients of nitrogen dioxide lines are calculated. The calculations are performed at a room temperature (Т = 296 K) for ~ 29000 lines, rotational quantum numbers vary in the range up to 87 for N and up to 20 Ka. The temperature exponents are calculated for every line. The resulted parameters are compared with the literature and spectroscopic database. The calculations are made by two approaches: the semi-empirical method and energy difference method.


profile parameters, line broadening, temperature exponent


  1. Tejwani J. Calculation of pressure-broadened linewidths of SO2 and NO2 // J. Chem. Phys 1972. V. 57, N 11. P. 4676–4681.
  2. Tejwani J., Yeung E.S. Pressure-broadened linewidths of nitrogen dioxide // J. Chem. Phys. 1975. V. 63, N 10. P. 4562–4564.
  3. Devi V.M., Das P.P., Bano A., Rao K.N. Diode laser measurements of intensities, N2-broadening, and self-broadening coefficient of lines of the n2 band of 14N16O2 // J. Mol. Spectrosc. 1981. V. 88. P. 251–258.
  4. Pustogov V.V., Kuhnemann F., Sumpf B., Heiner Y., Herrmann K. Pressure broadening of NO2 by NO2, N2, He, Ar, and Kr studied with TDLAS // J. Mol. Spectrosc. 1994. V. 167. P. 288–299.
  5. Moazzen-Ahmadi M.N., Roberts J.A. Linewidth parameters in the rotational spectrum of nitrogen dioxide // J. Mol. Spectrosc. 1982. V. 96. P. 336–341.
  6. Devi V.M., Fridovich B., Jones J.D., Snyder D.G.S., Das P.P., Flaud J.M., Camy-Peyret C., Rao K.N. Tunable diode laser spectroscopy of NO2 at 6.2 μm // J. Mol. Spectrosc. 1982. V. 93. P. 179–195.
  7. Dana V., Mandin J.Y., Allout M.Y., Perrin A., Regalia L., Barbe A., Plateaux J.J., Thomas X. Broadening parameters of NO2 lines in the 3.4 μm spectral region // J. Quant. Spectrosc. Radiat. Transfer. 1997. V. 57, N 4. P. 445–457.
  8. Bouazza S., Kissel A., Sumpf B., Kronfeldt H.D. Determination of the line-shift and line-broadening coefficients in the ν3 band of NO2 perturbed by O2, N2, H2, D2, and CO2 // J. Mol. Spectrosc. 1999. V. 198. P. 18–26.
  9. Benner D.C., Blake T.A., Brown L.R., Devi V.M., Smith M.A.H., Toth R.A. Air-broadening parameters in the ν3 band of 14N16O2 using a multispectrum fitting technique // J. Mol. Spectrosc. 2004. V. 228. P. 593–619.
  10. Lukashevskaya A.A., Lavrentieva N.N., Dudaryonok A.C., Perevalov V.I. NDSD-1000: High-resolution, high-temperature Nitrogen Dioxide Spectroscopic Databank // J. Quant. Spectrosc. Radiat. Transfer, 2016. V. 184. P. 205–217.
  11. Dudaryonok A.S., Lavrentieva N.N. Calculation of NO2 line contour parameters induced by nitrogen and carbon dioxide // Proc. SPIE. 2017. V. 10466. P. B1–B5.
  12. Gordon I.E., Rothman L.S., Hill C., Kochanov R.V., Tan Y., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Perevalov V.I., Perrin A., Shine K.P., Smith M.-A.H., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Barbe A., Császár A.G., Devi V.M., Furtenbacher T., Harrison J.J., Hartmann J.-M., Jolly A., Johnson T.J., Karman T., Kleiner I., Kyuberis A.A., Loos J., Lyulin O.M., Massie S.T., Mikhailenko S.N., Moazzen-Ahmadi N., Müller H.S.P., Naumenko O.V., Nikitin A.V., Polyansky O.L., Rey M., Rotger M., Sharpe S.W., Sung K., Starikova E., Tashkun S.A., Auwera J.V., Wagner G., Wilzewski J., Wcislo P., Yu S., Zak E.J. The HITRAN2016 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer 2017. V. 203. P. 3–69.
  13. Bykov A., Lavrentieva N., Sinitsa L. Semi-empiric approach of the calculation of H2O and CO2 line broadening and shifting // Mol. Phys. 2004. V. 102. P. 1653–1658.
  14. Dudaryonok A.S., Lavrentieva N.N., Ma Q. Metod srednih chastot dlya rascheta polushirin linij molekul tipa asimmetrichnogo volchka // Optika atmosf. i okeana. 2015. V. 28, N 8. P. 675–681; Dudaryonok A.S., Lavrentieva N.N., Ma Q. The average energy difference method for calculation of line broadening of asymmetric tops // Atmos. Ocean. Opt. 2015. V. 28, N 6. P. 503–509.
  15. Ma Q., Tipping R.H., Boulet C. Modification of the Robert–Bonamy formalism in calculating Lorentzian half-widths and shifts // J. Quant. Spectrosc. Radiat. Transfer. 2007. V. 103, N 3. P. 588–596.
  16. Langlois S., Birbeck T.P., Hanson R.K. Temperature-dependent collision-broadening parameters of H2O lines in the 1.4-μm region using diode laser absorption spectroscopy // J. Mol. Spectrosc. 1994. V. 167, N 2. P. 272–281.
  17. Lukashevskaya A.A., Kassi S., Campargue A., Perevalov V.I. High sensitivity cavity ring down spectroscopy of the 4ν3 band of NO2 near 1.59 μm // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 202. P. 302–307.
  18. Lukashevskaya A.A., Kassi S., Campargue A., Perevalov V.I. High sensitivity cavity ring down spectroscopy of the 2ν1 + 3ν2 + ν3 band of NO2 near 1.57 μm // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 200. P. 17–24.
  19. Lukashevskaya A.A., Mondelain D., Campargue A., Perevalov V.I. High sensitivity cavity ring down spectroscopy of the ν1 + 4ν3 band of NO2 near 1.34 μm // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 219. P. 393–398.
  20. Naumenko O.V., Lukashevskaya A.A., Kassi S., Beguier S., Campargue A. The ν1 + 3ν3 absorption band of nitrogen dioxide (14N16O2) by CRDS near 6000 cm-1 // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 232. P. 145–151.
  21. Lukashevskaya A.A., Naumenko O.V., Kassi S., Campargue A. First detection and analysis of the 3ν1 + ν2 + ν3 band of NO2 by CRDS near 6156 cm-1 // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 338. P. 91–96.
  22. Lukashevskaya A.A., Naumenko O.V., Perrin A., Mondelain D., Kassi S., Campargue A. High sensitivity cavity ring down spectroscopy of NO2 between 7760 and 7917 cm-1 // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 249–259.
  23. Hartmann J.-M., Taine J., Bonamy J., Labani B., Robert D. Collisional broadening of rotation-vibration lines for asymmetric-top molecules. II. H2O diode laser measurements in the 400–900 K range; calculations in the 300–2000 K range // J. Chem. Phys. 1987. V. 86. P. 144–156.