Vol. 34, issue 05, article # 3

Tanichev A. S., Petrov D. V., Matrosov I. I., Sharybkina K. K. Effect of helium on the Raman spectrum of methane in the range 2500–3300 cm-1. // Optika Atmosfery i Okeana. 2021. V. 34. No. 05. P. 329–333. DOI: 10.15372/AOO20210503 [in Russian].
Copy the reference to clipboard

The peak positions and half-widths of the Q-branch of the ν1 band, as well as the ratios of intensities of the Q-branches of ν3 and 2ν2 bands of methane in a methane–helium mixture are measured at various pressures and concentrations. An empirical model has been developed for estimation of the helium concentration in a methane-bearing medium by measuring these spectral parameters. The error in the He concentration is found to be less than 1% when using the ν1 band half-width. The ways of developing this technique and increasing its accuracy are considered.


methane, helium, Raman spectroscopy, gas analysis


  1. Knebl A., Yan D., Popp J., Frosch T. Fiber enhanced Raman gas spectroscopy // Trends Anal. Chem. 2018. V. 103. P. 230–238.
  2. Wang P., Chen W., Wan F., Wang J., Hu J. Cavity-enhanced Raman spectroscopy with optical feedback frequency-locking for gas sensing // Opt. Express. 2019. V. 27, N 23. P. 33312–33325.
  3. Schlüter S., Krischke F., Popovska-Leipertz N., Seeger T., Breuer G., Jeleazcov C., Schüttler J., Leipertz A. Demonstration of a signal enhanced fast Raman sensor for multi-species gas analyses at a low pressure range for anesthesia monitoring // J. Raman Spectrosc. 2015. V. 46, N 8. P. 708–715.
  4. Wen C., Huang X., Shen C. Multiple-pass-enhanced multiple-point gas Raman analyzer for industrial process control applications // J. Raman Spectrosc. 2020. V. 51, N 10. P. 2046–2052.
  5. Petrov D.V., Matrosov I.I., Zaripov A.R., Maznoy A.S. Application of Raman spectroscopy for determination of syngas composition // Appl. Spectrosc. 2020. V. 74, N 8. P. 948–953.
  6. Buldakov M.A., Korolev B.V., Matrosov I.I., Petrov D.V., Tikhomirov A.A. Raman gas analyzer for determining the composition of natural gas // J. Appl. Spectrosc. 2013. V. 80, N 1. P. 124–128.
  7. Petrov D.V., Matrosov I.I. Raman Gas Analyzer (RGA): Natural gas measurements // Appl. Spectrosc. 2016. V. 70, N 10. P. 1770–1776.
  8. Gao Y., Dai L.-K., Zhu H.-D., Chen Y.-L., Zhou L. Quantitative analysis of main components of natural gas based on Raman spectroscopy // Chinese J. Anal. Chem. 2019. V. 47, N 1. P. 67–76.
  9. Grynia E., Griffin P.J. Helium in natural gas – occurrence and production // J. Nat. Gas Eng. 2017. V. 1, N 2. P. 163–215.
  10. Pieroni D., Hartmann J.M., Chaussard F., Michaut X., Gabard T., Saint-Loup R., Berger H., Champion J.P. Experimental and theoretical study of line mixing in methane spectra. III. The Q branch of the Raman ν1 band // J. Chem. Phys. 2000. V. 112, N 3. P. 1335–1343.
  11. Zhang J., Qiao S., Lu W., Hu Q., Chen S., Liu Y. An equation for determining methane densities in fluid inclusions with Raman shifts // J. Geochem. Explor. 2016. V. 171. P. 20–28.
  12. Lin F., Bodnar R.J., Becker S.P. Experimental determination of the Raman CH4 symmetric stretching (ν1) band position from 1–650 bar and 0.3–22 °C: Application to fluid inclusion studies // Geochim. Cosmochim. Acta. 2007. V. 71, N 15. P. 3746–3756.
  13. Shang L., Chou I.-M., Burruss R.C., Hu R., Bi X. Raman spectroscopic characterization of CH4 density over a wide range of temperature and pressure // J. Raman Spectrosc. 2014. V. 45, N 8. P. 696–702.
  14. Seitz J.C., Pasteris J.D., Chou I.-M. Raman spectroscopic characterization of gas mixtures; I. Quantitative composition and pressure determination of CH4, N2 and their mixtures // Am. J. Sci. 1993. V. 293, N 4. P. 297–321.
  15. Herranz J., Stoicheff B.P. High-resolution Raman spectroscopy of gases. Part XVI. The ν3 Raman band of methane // J. Mol. Spectrosc. 1963. V. 10, N 1–6. P. 448–483.
  16. Lolck J.E., Robiette A.G. A theoretical model for the interacting upper states of the ν1, ν3, 2ν2, ν2 + ν4, and 2ν4 bands in methane // J. Mol. Spectrosc. 1981. V. 88, N 1. P. 14–29.
  17. Petrov D.V. Pressure dependence of peak positions, half widths, and peak intensities of methane Raman bands (ν2, 2ν4, ν1, ν3, and 2ν2) // J. Raman Spectrosc. 2017. V. 48, N 11. P. 1426–1431.
  18. Lu W., Chou I.-M., Burruss R.C., Song Y. A unified equation for calculating methane vapor pressures in the CH4–H2O system with measured Raman shifts // Geochim. Cosmochim. Acta. 2007. V. 71, N 16. P. 3969–3978.
  19. Brunsgaard Hansen S., Berg R.W., Stenby E.H. How to determine the pressure of a methane-containing gas mixture by means of two weak Raman bands, ν3 and 2ν2 // J. Raman Spectrosc. 2002. V. 33, N 3. P. 160–164.
  20. Wang M., Lu W., Li L., Qiao S. Pressure and temperature dependence of the Raman peak intensity ratio of asymmetric stretching vibration (ν3) and asymmetric bending overtone (2ν2) of methane // Appl. Spectrosc. 2014. V. 68, N 5. P. 536–540.
  21. Petrov D.V, Matrosov I.I., Tanichev A.S. Intensities of 2ν4 and 2ν2 methane Raman bands as a function of pressure // Proc. SPIE. 2020. V. 11560. P. 115600A.