Vol. 34, issue 06, article # 10

Golovko V. V., Zueva G. A., Kiseleva T. I. Pollen grains of anemophilic plants entering the atmosphere. Cluster composition. // Optika Atmosfery i Okeana. 2021. V. 34. No. 06. P. 446–452. DOI: 10.15372/AOO20210610 [in Russian].
Copy the reference to clipboard
Abstract:

The friction velocity (dynamic velocity) u* enters into nearly all computational schemes used for forecasting the state of the atmosphere. To find this velocity, it is necessary to know the mixed moments of turbulent components of the wind vector. However, the information about turbulence is lacking at the initial stage of forecast. That is why model equations are usually used for u*. These equations are based on the relation of the friction velocity to the horizontal wind velocity Vh. In this work, we considers the empirical relations u*(Vh) for various conditions (different time of the day, seasons, types of stratification, observation sites, and measurement altitudes). Initial experimental data used to derive these relations were obtained by ultrasonic meteorological stations operating in the surface air layer at different observation sites.

Keywords:

pollen, anemophilous plants, atmospheric aerosol, clusters

References:

1. Ackerman J.D. Abiotic pollen and pollination: Ecological, functional, and evolutionary perspectives // Plant Syst. Evol. 2000. V. 222. P. 167–185.
2. Opredelitel' rastenij Novosibirskoj oblasti / I.M. Krasnoborov, M.N. Lomonosova, D.N. Shaulo [i dr.]. Novosibirsk: Nauka, Sibirskoe predpriyatie RAN, 2000. 492 p.
3. Erdtman G. Handbook of Palynolody // Munksgaard, 1969. 487 p.
4. Despre V.R., Huffman A.J., Burrows S.M., Hoose C., Safatov A.S., Buryak G., Fröhlich-Nowoisky J., Elbert W., Andreae M.O., Pösch U., Jaenicke R. Primary biological aerosol particles in the atmosphere: A review // Tellus В. 2012. V. 64. P. 1–58.
5. Golovko V.V., Kutsenogij K.P., Istomin V.L. Schetnye i massovye kontsentratsii pyl'tsevoj komponenty atmosfernogo aerozolya v okrestnostyah g. Novosibirska v period tsveteniya drevesnyh rastenij // Optika atmosf. i okeana, 2015. V. 28, N 6. P. 529–533.
6. Greenfield L.G. Weight loss and release of mineral nitrogen from decomposing pollen // Soil Biol. Biochem. 1999. V. 31, N 3. P. 351–353.
7. Bohlmann S., Shang X., Giannakaki E., Filioglou M., Romakkaniemi S., Komppula M., Saarto A. Detection and characterization of birch pollen in the atmosphere using a multiwavelength Raman polarization lidar and Hirst-type pollen sampler in Finland // Atmos. Chem. Phys. 2019. V. 19, N 23. P. 14559–14569.
8. Buters J.T.M., Antunes C., Galveias A., Bergmann K.C., Thibaudon M., Galán C., Schmidt-Weber C., Oteros J. Pollen and spore monitoring in the world // Clin. Transl. Allergy. 2018. V. 8. P. 9. DOI: 10.1186/s13601-018-0197-8.
9. Beggs P.J. Allergen aerosol from pollen‑nucleated precipitation: A novel thunderstorm asthma trigger // Atmos. Environ. 2017. V. 152. P. 455–457.
10. Kupriyanova L.A., Aleshina L.A. Pyl'tsa i spory dvudol'nyh rastenij flory evropejskoj chasti SSSR. L.: Nauka, 1978. V. 1. 174 p.
11. Crook B. Inertial Samplers: Biological Perspectives // Bioaerosols Handbook / C.S. Cox, C.M. Wathes (eds.). Boca Raton, Florida: Lewis Publishers Inc, 1995. P. 247–267.
12. Crook B. Non-Inertial Samplers: Biological Perspectives // Bioaerosols Handbook / C.S. Cox, C.M. Wathes (eds.). Boca Raton, Florida: Lewis Publishers Inc, 1995. P. 269–283.
13. Fuks N.A. Mekhanika aerozolej. M.: Izd-vo AN SSSR, 1955. 352 p.
14. Golovko V.V., Belanova A.P., Zueva G.A. Issledovanie klasternogo sostava pyl'tsevyh chastits, postupayushchih v atmosferu vo vremya tsveteniya anemofil'nyh rastenij // Optika atmosf. i okeana. 2019. V. 32, N 6. P. 476–481. DOI: 10.15372/AOO20190610.
15.  Ivanter E.V., Korosov A.V. Elementarnaya biometriya. Petrozavodsk: Izd-vo PetrGU, 2010. 104 p.