Vol. 34, issue 06, article # 3

Andreeva I. S., Safatov A. S., Puchkova L. I., Emelyanova E. K., Buryak G. A., Ternovoi V. A. Biodiversity and biotechnological potential of spore-forming bacteria isolated from atmospheric aerosols of Western Siberia. // Optika Atmosfery i Okeana. 2021. V. 34. No. 06. P. 408–413. DOI: 10.15372/AOO20210603 [in Russian].
Copy the reference to clipboard
Abstract:

The diversity of spore-forming bacteria isolated from high-altitude and near-surface aerosol samples while monitoring the biogenic component of atmospheric air in southwestern Siberia were investigated. A significant predominance of spore-forming bacteria over representatives of other microorganism groups was recorded from October to December 2016. Sixty-two cultivated cultures of endospore-forming bacteria were isolated from the aerosol samples collected in that period. Their morphological, physiological, and biochemical characteristics were studied, their genomic identification was performed, and their enzymatic activity was determined. The isolated and characterized bacterial cultures were identified as belonging to the genera Bacillus, Paenibacillus, Brevibacillus, Lysinibacillus, etc. and possessing biotechnologically significant proteolytic, amylolytic, phosphatase, lipolytic, and nuclease activities.

Keywords:

atmosphere, bioaerosols, atmospheric aerosols, viable spore-forming microorganisms, enzymatic activity, Bacillus

References:

1. Mohler O., DeMott P.J., Vali G., Levin Z. Microbiology and atmospheric processes: The role of biological particles in cloud physics // Biogeosciences. 2007. V. 4, N 4. P. 1059–1071.
2. Phillips V.T.J., Andronache C., Christner B., Morris C.E., Sands D.C., Bansemer A., Lauer A., McNaughton C., Seman C. Potential impacts from biological aerosols on ensembles of continental clouds simulated numerically // Biogeosciences. 2009. V. 6. P. 987–1014.
3. Brown J.K.M., Hovmoller M.S. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease // Science. 2002. V. 297, N 5581. P. 537–541.
4. Kellog C.A., Griffin D.W. Aerobiology and global transport of desert dust // Trends Ecol. Evol. 2006. V. 21, N 11. P. 638–644.
5. Burrows S.M., Elbert W., Lawrence M.G., Pöschl U. Bacteria in the global atmosphere – Part 1: Review and synthesis of literature data for different ecosystems // Atmos. Chem. Phys. 2009. V. 9. P. 9263–9280.
6. Tanaka D., Terada Y., Nakashima T., Sakatoku A., Nakamura S. Seasonal variations in airborne bacterial community structures at a suburban site of central Japan over a 1-year time period using PCR-DGGE method // Aerobiologia. 2014. V. 31, N 2. P. 143–157.
7. Zhai Y., Li X., Wang T., Wang B., Li C., Zeng G. A review on airborne microorganisms in particulate matters: Composition, characteristics and influence factors // Environ. Int. 2018. V. 113. P. 74–90.
8. Smets W., Moretti S., Denys S., Lebeer S. Airborne bacteria in the atmosphere: Presence, purpose, and potential // Atmos. Environ. 2016. V. 139. P. 214–221.
9. Maki T., Kakikawa M., Kobayashi F., Yamada M., Matsuki A., Hasegawa H., Iwasaka Y. Assessment of composition and origin of airborne bacteria in the free troposphere over Japan // Atmos. Environ. 2013. V. 74. P. 73–82.
10. Matvienko G.G., Belan B.D., Panchenko M.V., Sakerin S.M., Kabanov D.M., Turchinovich S.A., Turchinovich Yu.S., Eremina T.A., Kozlov V.S., Terpugova S.A., Pol’kin V.V., Yausheva E.P., Chernov D.G., Odintsov S.L., Burlakov V.D., Arshinov M.Yu., Ivlev G.A., Savkin D.E., Fofonov A.V., Gladkikh V.A., Kamardin A.P., Belan D.B., Grishaev M.V., Belov V.V., Afonin S.V., Balin Yu.S., Kokhanenko G.P., Penner I.E., Samoilova S.V., Antokhin P.N., Arshinova V.G., Davydov D.K., Kozlov A.V., Pestunov D.A., Rasskazchikova T.M., Simonenkov D.V., Sklyadneva T.K., Tolmachev G.N., Belan S.B., Shmargunov V.P., Voronin B.A., Serdyukov V.I., Polovtseva E.R., Vasil’chenko S.S., Tikhomirova O.V., Ponomarev Yu.N., Romanovskii O.A., Sinitsa L.N., Marichev V.N., Makarova M.V., Safatov A.S., Kozlov A.S., Malyshkin S.B., Maksimova T.A. Instrumentation complex for comprehensive study of atmospheric parameters // Int. J. Remote Sens. 2014. V. 35, N 15. P. 5651–5676.
11. Metody obshchej bakteriologii: v 3 tt. / pod red. F. Gerharda, R. Myurrej, R. Kostilou, Yu. Nestera, V. Vuda, N. Kriga, G. Filipsa. M.: Mir, 1984. V. 3. 264 p.
12. Opredelitel' bakterij Berdzhi: v 2 vv. / pod red. Dzh. Houlta. M.: Mir, 1997. V. 2. 368 p.
13. Rukovodstvo po meditsinskoj mikrobiologii. Obshchaya i sanitarnaya mikrobiologiya. Kniga I / pod red. A.S. Labinskoj, E.G. Volinoj. M.: BINOM, 2008. 1080 p.
14. Ashmarin I.P., Vorob'ev A.A. Statisticheskie metody v mikrobiologicheskih issledovaniyah. L.: Medgiz, 1962. 180 p.
15. Maniatis T., Frich E., Sembruk Dzh. Metody geneticheskoj inzhenerii. Molekulyarnoe klonirovanie. M.: Mir, 1984. 480 p.
16. Wang Y., Qian P.-Y. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies // PLoS One. 2009. V. 4, N 10. DOI: 10.1371/journal.pone. 0007401.
17. Dominguez-Monino I., Jurado V., Gonzalez-Pimentel J.L., Miller A.Z., Hermosin B., Saiz-Jimenez C. Bacillus onubensis sp. nov., isolated from the air of two Andalusian caves // Syst. Appl. Microbiol. 2018. V. 41, N 3. P. 167–172.
18. Javed S., Azeem F., Hussain S., Rasul I., Siddique M.H., Riaz M., Afzal M., Kouser A., Nadeem H. Bacterial lipases: A review on purification and characterization // Prog. Biophys. Mol. Biol. 2018. V. 132. P. 23–34.
19. Aderiye B., Sulaimon A. Optimization and lipase Production of Lysinibacillus sphaericus in domestic oil rich waste water // Biotechnol. J. Int. 2017. V. 19, N 4. P. 1–12.
20. Divakar K., Suryia Prabha M., Gautam P. Purification, immobilization and kinetic characterization of G-x-S-x-G esterase with short chain fatty acid specificity from Lysinibacillus fusiformis AU01 // Biocatal. Agric. Biotechnol. 2017. V. 12. P. 131–141.
21. Kareem S.O., Adegoke O.O., Balogun S.A., Afolabi A.T., Akinde S.B. Biodegradation of premium motor spirit (PMS) by lipase from Bacillus thuringiensis and Lysinibacillus sphaericus // Nig. J. Biotech. 2017. V. 33. P. 34–40.
22. Ильинская О.Н., Шах Махмуд Р. Рибонуклеазы как противовирусные агенты // Молекулярная биология. 2014. Т. 48, № 5. C. 707–717.
23. Andreeva I.S., Safatov A.S., Mokrushina O.S., Buryak G.A., Puchkova L.I., Mazurkova N.A., Burtseva L.I., Kalmykova G.V. Insektitsidnaya, antimikrobnaya i protivovirusnaya aktivnost' shtammov Bacillus thuringiensis ssp. kurstaki, vydelennyh iz atmosfernyh aerozolej yuga Zapadnoj Sibiri // Optika atmosf. i okeana. 2014. Т. 27, N 6. P. 483–490; Andreeva I.S., Safatov A.S., Mokrushina O.S., Buryak G.A., Puchkova L.I., Mazurkova N.A., Burtseva L.I., Kalmykova G.V. Insecticidal, antimicrobial, and antiviral activity of Bacillus thuringiensis ssp. kurstaki strains isolated from atmospheric aerosols in the South of Western Siberia // Atmos. Ocean. Opt. 2014. V. 27, N 4. P. 479–486.
24. Allen H.K., Donato J., Wang H.H., Cloud-Hansen K.A., Davies J., Handelsman J. Call of the wild: Antibiotic resistance genes in natural environments // Nat. Rev. Microbiol. 2010. V. 8, N 4. P. 251–259.
25. Tan L., Li L., Ashbolt N., Wang X., Cui Y., Zhu X., Xu Y., Yang Y., Mao D., Luo Y. Arctic antibiotic resistance gene contamination, a result of anthropogenic activities and natural origin // Sci. Total Environ. 2018. V. 621. P. 1176–1184.