Content of issue 08, volume 34, 2021

1. Tolstonogova Yu. S., Golik S. S., Maior A. Yu., Ilin A. A., Proschenko D. Yu., Bukin O. A. Effect of the repetition rate of laser pulses on the limits of detection of the elemental composition of pollutants in aqueous solutions by femtosecond laser induced breakdown spectroscopy. P. 571–576
Bibliographic reference:
Tolstonogova Yu. S., Golik S. S., Maior A. Yu., Ilin A. A., Proschenko D. Yu., Bukin O. A. Effect of the repetition rate of laser pulses on the limits of detection of the elemental composition of pollutants in aqueous solutions by femtosecond laser induced breakdown spectroscopy. // Optika Atmosfery i Okeana. 2021. V. 34. No. 08. P. 571–576. DOI: 10.15372/AOO20210801 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Tolstonogova Yu.S., Golik S.S., Mayor A.Yu., Ilyin A.A., Proschenko D.Yu. and Bukin O.A. Effect of Laser Pulse Repetition Rate on the Detection Limits of the Elemental Composition of Pollutants in Aqueous Solutions by Femtosecond Laser Induced Breakdown Spectroscopy // Atmospheric and Oceanic Optics, 2021, V. 34. No. 06. pp. 553–559.
Copy the reference to clipboard    Open the english version
2. Tentyukov M. P., Shukurov K. A., Belan B. D., Simonenkov D. V., Yazikov E. G., Mikhailov V. I., Buchelnikov V. S. Conjugate analysis of the particle size distribution of aerosol matter in the surface air and snow cover: the effect of air masses on the distribution of aerosol particles. P. 577–584
Bibliographic reference:
Tentyukov M. P., Shukurov K. A., Belan B. D., Simonenkov D. V., Yazikov E. G., Mikhailov V. I., Buchelnikov V. S. Conjugate analysis of the particle size distribution of aerosol matter in the surface air and snow cover: the effect of air masses on the distribution of aerosol particles. // Optika Atmosfery i Okeana. 2021. V. 34. No. 08. P. 577–584. DOI: 10.15372/AOO20210802 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Tentyukov M.P., Shukurov K.A., Belan B.D., Simonenkov D.V., Yazikov E.G., Mikhailov V.I. and Buchelnikov V.S. Coupled Analysis of Granulometric Composition of Aerosol Substance in Surface Air and Snow Cover: Effect of Air Masses on Aerosol Particle Distribution // Atmospheric and Oceanic Optics, 2021, V. 34. No. 06. pp. 586–595.
Copy the reference to clipboard    Open the english version
3. Tkachev I. V., Timofeev D. N., Kustova N. V., Konoshonkin A. V., Shmirko K. A. The Umov effect for irregular shaped particles larger than the wavelength. P. 585–590
Bibliographic reference:
Tkachev I. V., Timofeev D. N., Kustova N. V., Konoshonkin A. V., Shmirko K. A. The Umov effect for irregular shaped particles larger than the wavelength. // Optika Atmosfery i Okeana. 2021. V. 34. No. 08. P. 585–590. DOI: 10.15372/AOO20210803 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Tkachev I.V., Timofeev D.N., Kustova N.V., Konoshonkin A.V. and Shmirko  K.A. The Umov Effect for Large Irregular-Shaped Particles // Atmospheric and Oceanic Optics, 2021, V. 34. No. 06. pp. 596–602.
Copy the reference to clipboard    Open the english version
4. Tsydenov B. O. The effects of heat fluxes on phytoplankton distribution in a freshwater lake. P. 591–598
Bibliographic reference:
Tsydenov B. O. The effects of heat fluxes on phytoplankton distribution in a freshwater lake. // Optika Atmosfery i Okeana. 2021. V. 34. No. 08. P. 591–598. DOI: 10.15372/AOO20210804 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Tsydenov B.O. Effects of Heat Fluxes on the Phytoplankton Distribution in a Freshwater Lake // Atmospheric and Oceanic Optics, 2021, V. 34. No. 06. pp. 603–610.
Copy the reference to clipboard    Open the english version
5. Banakh V. A., Gordeev E. V., Kuskov V. V., Rostov A. P., Shesternin A. N. Controlling the initial wavefront of a spatially partially coherent beam by the aperture probing method based on the signal of atmospheric backscatter. I. Experimental setup. P. 599–605
Bibliographic reference:
Banakh V. A., Gordeev E. V., Kuskov V. V., Rostov A. P., Shesternin A. N. Controlling the initial wavefront of a spatially partially coherent beam by the aperture probing method based on the signal of atmospheric backscatter. I. Experimental setup. // Optika Atmosfery i Okeana. 2021. V. 34. No. 08. P. 599–605. DOI: 10.15372/AOO20210805 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Banakh V.A., Gordeev E.V., Kuskov V.V., Rostov A.P. and Shesternin A.N. Controlling the Initial Wavefront of a Spatially Partially Coherent Beam by the Aperture Sensing Technique Based on Backscatter Signals in the Atmosphere: I. Experimental Setup // Atmospheric and Oceanic Optics, 2021, V. 34. No. 06. pp. 625–631.
Copy the reference to clipboard    Open the english version
6. Banakh V. A., Gordeev E. V., Kuskov V. V., Rostov A. P., Shesternin A. N. Controlling the initial wavefront of a spatially partially coherent beam by the aperture sensing technique based on backscatter signals in the atmosphere. II. Experiment. P. 606–616
Bibliographic reference:
Banakh V. A., Gordeev E. V., Kuskov V. V., Rostov A. P., Shesternin A. N. Controlling the initial wavefront of a spatially partially coherent beam by the aperture sensing technique based on backscatter signals in the atmosphere. II. Experiment. // Optika Atmosfery i Okeana. 2021. V. 34. No. 08. P. 606–616. DOI: 10.15372/AOO20210806 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Banakh V.A., Gordeev E.V., Kuskov V.V., Rostov A.P. and Shesternin A.N. Controlling the Initial Wavefront of a Spatially Partially Coherent Beam by the Aperture Sensing Technique Based on Backscatter Signals in the Atmosphere: II. Experiment // Atmospheric and Oceanic Optics, 2021, V. 34. No. 06. pp. 632–642.
Copy the reference to clipboard    Open the english version
7. Sosnin E. A., Kuznetsov V. S., Panarin V. A. Energy release in a thundercloud, which is necessary for the transient middle atmosphere light phenomena formation. P. 617–620
Bibliographic reference:
Sosnin E. A., Kuznetsov V. S., Panarin V. A. Energy release in a thundercloud, which is necessary for the transient middle atmosphere light phenomena formation. // Optika Atmosfery i Okeana. 2021. V. 34. No. 08. P. 617–620. DOI: 10.15372/AOO20210807 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Sosnin E.A., Kuznetsov V.S. and Panarin V.A. Energy Release in a Thundercloud Necessary for the Formation of Middle Atmosphere Transient Light Phenomena // Atmospheric and Oceanic Optics, 2021, V. 34. No. 06. pp. 722–725.
Copy the reference to clipboard    Open the english version
8. Tarasenkov M. V., Zonov M. N., Belov V. V., Engel' M. V. Passive satellite sensing of the Earth’s surface through gaps in cloudy fields. P. 621–628
Bibliographic reference:
Tarasenkov M. V., Zonov M. N., Belov V. V., Engel' M. V. Passive satellite sensing of the Earth’s surface through gaps in cloudy fields. // Optika Atmosfery i Okeana. 2021. V. 34. No. 08. P. 621–628. DOI: 10.15372/AOO20210808 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Tarasenkov M.V., Zonov M.N., Belov V.V. and Engel M.V. Passive Satellite Sensing of the Earth’s Surface through Breaks in Cloud Fields // Atmospheric and Oceanic Optics, 2021, V. 34. No. 06. pp. 695–703.
Copy the reference to clipboard    Open the english version
9. Zarochentsev G. A., Rubinshtein K. G. The quality of modern numerical visibility forecast methods
 
. P. 629–637
Bibliographic reference:
Zarochentsev G. A., Rubinshtein K. G. The quality of modern numerical visibility forecast methods
 . // Optika Atmosfery i Okeana. 2021. V. 34. No. 08. P. 629–637. DOI: 10.15372/AOO20210809 [in Russian].
Copy the reference to clipboard
10. Gerasimov V. V. Method for determining cross sections of excitation transfer in collisions with atoms of rare-earth metals. 1. Description of the method. P. 638–646
Bibliographic reference:
Gerasimov V. V. Method for determining cross sections of excitation transfer in collisions with atoms of rare-earth metals. 1. Description of the method. // Optika Atmosfery i Okeana. 2021. V. 34. No. 08. P. 638–646. DOI: 10.15372/AOO20210810.
Copy the reference to clipboard
Bibliographic reference to english version:
Gerasimov V.V. Method for Determining Cross Sections of Excitation Transfer in Collisions with Atoms of Rare-earth Metals. 1. Description of the Method // Atmospheric and Oceanic Optics, 2021, V. 34. No. 06. pp. 738–746.
Copy the reference to clipboard    Open the english version
11. Gerasimov V. V. Technique for determining cross sections of excitation transfer in collisions with atoms of rare-earth metals. 2. Application of the method. P. 647–660
Bibliographic reference:
Gerasimov V. V. Technique for determining cross sections of excitation transfer in collisions with atoms of rare-earth metals. 2. Application of the method. // Optika Atmosfery i Okeana. 2021. V. 34. No. 08. P. 647–660. DOI: 10.15372/AOO20210811 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Gerasimov V.V. Method for Determining Cross Sections of Excitation Transfer in Collisions with Atoms of Rare-earth Metals. 2. Application of the Method // Atmospheric and Oceanic Optics, 2021, V. 34. No. 06. pp. 747–761.
Copy the reference to clipboard    Open the english version
12. Personalia.. P. 661–662