Vol. 34, issue 10, article # 2

Bаbushkin P. A., Matvienko G. G., Oshlakov V. K. Determination of the elemental composition of aerosol by femtosecond laser-induced breakdown spectroscopy. // Optika Atmosfery i Okeana. 2021. V. 34. No. 10. P. 759-764. DOI: 10.15372/AOO20211002 [in Russian].
Copy the reference to clipboard
Abstract:

Information about an angular distribution of emission from the filamentation region is required to select an effective scheme for remote sensing of the aerosol atmosphere by femtosecond laser-induced breakdown spectroscopy.
We present the results of a series of experiments on identification of an impurity with the use of femtosecond LIBS. The angular distribution of the emission from the femtosecond radiation filamentation region in the atmosphere for an impurity in water aerosol is estimated in the range from 0 to 180° based on the experimental data. A model of the angular distribution of the emission is suggested, where absorption in the filament plasma is taken into account. The variation in the intensity of the emission line with the impurity concentration is analyzed. It is shown that emission from the filamentation region occurs due to spontaneous emission.

Keywords:

femtosecond, lidar, aerosol, plasma, emission, FS-LIBS

Figures:
References:

  1. Zuev V.E., Zemlyanov A.A., Kopytin Yu.D. Nelinejnaya optika atmosfery. L.: Gidrometeoizdat, 1989. 256 p.
  2. Chin S.L., Xu H.L., Luo Q., Théberge F., Liu W., Daigle J.F., Dubois J. Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source // Appl. Phys. B. 2009. V. 95, N 1. P. 1–12.
  3. Rohwetter P., Yu J., Mejean G., Stelmaszczyk K., Salmon E., Kasparian J., Wöste L. Remote LIBS with ultrashort pulses: Characteristics in picosecond and femtosecond regimes // J. Anal. At. Spectrom. 2004. V. 19, N 4. P. 437–444.
  4. Zemlyanov A.A., Kabanov A.M. Energeticheskie porogi i vremennye harakteristiki vzryvnogo vskipaniya i razrusheniya aerozol'nyh chastits v pole izlucheniya СО2 -lazera // Optika atmosf. i okeana. 1995. V. 8, N 8. P. 1165–1169.
  5. Zemlyanov A.A., Mal'tseva G.A., Pogodaev V.A. Prozrachnost' opticheskogo kanala vo vlazhnyh atmosfernyh dymkah v usloviyah opticheskogo proboya // Optika atmosf. i okeana. 1989. V. 2, N 6. P. 609–614.
  6. Spektrohimicheskij lidar: Pat. 864966. SSSR. G 01 N 21/00. Godlevskij A.P., Kopytin Yu.D., Nosov V.V., Zhukov A.F. Gospatent SSSR. un-t. N 2921579/25; Zayavl. 30.04.80. Byul. N 5.
  7. Labutin T.A., Lednev V.N., Ilyin A.A., Popov A.M. Femtosecond laser-induced breakdown spectroscopy // J. Anal. At. Spectrom. 2016. V. 31, N 1. P. 90–118.
  8. Gurevich E.L., Hergenröder R. Femtosecond laser –induced breakdown spectroscopy: Physics, applications, perspectives // Appl. Spectrosc. 2007. V. 61, N 10. P. 233A–242A.
  9. Askar'yan G.A. Effekt samofokusirovki // Uspekhi fiz. nauk. 1973. V. 111, N 10. P. 249–260.
  10. Ahmanov S.A., Vyslouh V.A., Chirkin A.S. Optika femtosekundnyh lazernyh impul'sov. M.: Nauka, 1988. 312 p.
  11. Rajzer Yu.P. Lazernaya iskra i rasprostranenie razryadov. M.: Nauka, 1974. 308 p.
  12. Teramobile [Electronic resourse]. URL: http://www.teramobile.org (last access: 01.07.2021).
  13. Braun A., Korn G., Liu X., Du D., Squier J., Mourou G. Self-channeling of high-peak-power femtosecond laser pulses in air // Opt. Lett. 1995. V. 20, N 1. P. 73–75.
  14. Pilipetskij N.F., Rustamov A.R. Nablyudenie samofokusirovki sveta v zhidkostyah // Pis'ma v ZhETF. 1965. V. 2, N 2. P. 88–90.
  15. Talebpour A., Abdel-Fattah M., Bandrauk A.D., Chin S.L. Spectroscopy of the gases interacting with intense femtosecond laser pulses // Laser Phys. 2001. V. 11, N 1. P. 68–76.
  16. Matvienko G.G., Oshlakov V.K., Stepanov A.N., Suhanov A.Ya. Modelirovanie perenosa izlucheniya metodom Monte-Karlo i reshenie obratnoj zadachi na osnove geneticheskogo algoritma po rezul'tatam eksperimenta zondirovaniya aerozolej na korotkih trassah s ispol'zovaniem femtosekundnogo lazernogo istochnika // Kvant. elektron. 2015. V. 45, N 2. P. 145–152.
  17. Lofthus A., Krupenie P.H. The spectrum of molecular nitrogen // J. Phys. Chem. Ref. Data. 1977. V. 6, N 1. P. 113–307.
  18. Krupenie P.H. The spectrum of molecular oxygen // J. Phys. Chem. Ref. Data. 1972. V. 1, N 2. P. 423–534.
  19. URL: https://www.nist.gov/pml/atomic-spectra-database (last access: 1.07.2021).
  20. Krivonosenko A.V., Krivonosenko D.A., Prokop'ev V.E. Izluchatel'nye harakteristiki impul'snogo razryada po strue vody v vozduhe // Optika atmosf. i okeana. 2012. V. 25, N 3. P. 268–272.
  21. Shmidt V. Opticheskaya spektroskopiya dlya himikov i biologov. M.: Tekhnosfera, 2007. 368 p.
  22. Kandidov V.P., Shlenov S.A., Kosareva O.G. Filamentatsiya moshchnogo femtosekundnogo lazernogo izlucheniya // Kvant. elektron. 2009. V. 39, N 3. P. 205–228.
  23. Andreev A.V., Emel'yanov V.I., Il'inskij Yu.A. Kollektivnoe spontannoe izluchenie (sverhizluchenie Dike) // Uspekhi fiz. nauk. 1980. V. 131, N 8. P. 653–694.
  24. Landsberg G.S. Optika. M.: Nauka, 1976. 926 p.
  25. Buger P. Opticheskij traktat o gradatsii sveta. M.: Izd-vo AN SSSR, 1950. 478 p.
  26. Braun A., Korn G., Liu X., Du D., Squier J., Mourou G. Self-channeling of high-peak-power femtosecond laser pulses in air // Opt. Lett. 1995. V. 20, N 1. P. 73–75.
  27. Nibbering E.T.J., Curley P.F., Grillon G., Prade B.S., Franco M.A., Salin F., Mysyrowicz A. Conical emission from self-guided femtosecond pulses in air // Opt. Lett. 1996. V. 21, N 1. P. 62–64.
  28. Brodeur A., Chien C.Y., Ilkov F.A., Chin S.L., Kosareva O.G., Kandidov V.P. Moving focus in the propagation of ultrashort laser pulses in air // Opt. Lett. 1997. V. 22, N 5. P. 304–306.
  29. Zvelto O. Printsipy lazerov. SPb.: Lan', 2008. 720 p.