Vol. 34, issue 11, article # 2

Ionov D. V., Privalov V. I. The differential spectroscopy technique DOAS in the problem of determining the total ozone content from measurements of ground-based UV spectrometer UFOS. // Optika Atmosfery i Okeana. 2021. V. 34. No. 11. P. 842–848. DOI: 10.15372/AOO20211102 [in Russian].
Copy the reference to clipboard
Abstract:

The first experience of using the differential spectroscopy technique DOAS for retrieving the total ozone content (TOC) from measurements of the ground-based UV spectrometer UFOS is considered. Examples of spectra recorded by UFOS and similar spectral equipment are presented. Test calculations of TOC with the use of DOAS are performed based on the UFOS measurements for several days at the Voeikovo station. The resulted TOC values are compared with independent ground-based and satellite measurements. The TOC calculations systematically differ from independent data, which can apparently be eliminated by means of a more accurate adjustment of the DOAS algorithm to the problem conditions and UFOS parameters.

Keywords:

total ozone content, UFOS, DOAS

References:

  1. Gushchin G.P., Sokolenko S.A. Novyj malogabaritnyj ozonometr M-124, prednaznachennyj dlya izmereniya summarnogo ozona. 1987 // Atmosfernyj ozon: sb. tr. VI Vsesoyuz. simpoz., Leningrad, 15–17 may 1985 year. P. 49–56.
  2. Romashkina K.I. Usovershenstvovannaya metodika graduirovki ozonometra M-83 po svetu ot zenita neba // Trudy GGO. 1984. Iss. 472. P. 74–82.
  3. Shalamyanskij A.M., Romashkina K.I., Ignatenko V.M. Usovershenstvovanie metodiki izmerenij OSO po svetu ot zenita neba // Tr. GGO. 2002. Iss. 552. P. 102–109.
  4. Solomatnikova A.A. Metod avtomatizirovannyh izmerenij ul'trafioletovoj radiatsii i obshchego soderzhaniya ozona spektrometrom UFOS na seti Rosgidrometa: dis. ... kand. tekhn. nauk. SPb., 2010. 100 p.
  5. Solomatnikova A.A. Raschet obshchego soderzhaniya ozona pri avtomatizirovannyh izmereniyah po svetu ot zenita yasnogo i oblachnogo neba // Tr. GGO. 2009. Iss. 560. P. 102–109.
  6. Pommereau J.-P., Goutail F. O3 and NO2 ground-based measurements by visible spectrometry during arctic winter and spring 1988 // Geophys. Res. Lett. 1988. V. 15. P. 891–894.
  7. Platt U., Stuz J. Differential Optical Absorption Spectroscopy (DOAS), Principles and Applications. Berlin, Heidelberg: Springer, 2008. 598 p.
  8. Poberovskij A.V., Shashkin A.V., Ionov D.V., Timofeev Yu.M. Variatsii soderzhaniya NO2 v rajone Sankt-Peterburga po nazemnym i sputnikovym izmereniyam rasseyannogo solnechnogo izlucheniya // Izv. RAN. Fiz. atmosf. i okeana. 2007. V. 43, N 4. P. 112–120.
  9. Ionov D.V., Timofeyev Yu.M., Poberovskii A.V. Spektroskopicheskie izmereniya soderzhaniya O3 i NO2 v atmosfere: korrektsiya nazemnogo metoda i rezul'taty sopostavleniya s dannymi sputnikovyh izmerenij // Optika atmosf. i okeana. 2015. V. 28, N 8. P. 704–710; Ionov D.V., Timofeyev Yu.M., Poberovskii A.V. Spectroscopic measurements of O3 and NO2 atmospheric content: Correction of ground-based method and comparison with satellite data // Atmos. Ocean. Opt. 2015. V. 28, N 6. P. 526–532.
  10. Ionov D.V., Poberovskii A.V., Ionov V.V. Distantsionnye spektroskopicheskie izmereniya soderzhaniya NO2 v gorodskom vozduhe (na primere Sankt-Peterburga) // Zhurn. prikl. spektroskop. 2017. V. 84, N 1. P. 127–131.
  11. Kraus S.G. DOASIS: A Framework Design for DOAS. Germany: Shaker Verlag GmbH, 2006. 182 p.
  12. Fayt C., van Roozendael M. WinDOAS 2.1 Software user manual. Brussels: Belgian Institute for Space Aeronomy, 2001. http://uv-vis.aeronomie.be/software.
  13. Dobrolenskij Yu.S., Ionov D.V., Korablev O.I., Fedorova A.A., Zherebtsov E.A., Shatalov A.E., Poberovskij A.V. Nazemnye polevye izmereniya i kalibrovki novogo sputnikovogo spektrometra dlya monitoringa ozonovogo sloya Zemli // Issled. Zemli iz kosmosa. 2017. N 5. P. 82–92.
  14. Rozanov V.V., Buchwitz M., Eichmann K.-U., de Beek R., Burrows J.P. SCIATRAN – a new radiative transfer model for geophysical applications in the 240–2400 nm spectral region: The pseudo-spherical version // Adv. Space Res. 2002. V. 29, N 11. P. 1831–1835.
  15. U.S. Standard Atmosphere. URL: http://modelweb.gsfc.nasa.gov/atmos/us_standard.html (last access: 6.08.2021).
  16. Levelt P.F., Hilsenrath E., Leppelmeier G.W., van den Oord G.H.J., Bhartia P.K., Tamminen J., Haan J.F., Veefkind J.P. Science objectives of the Ozone Monitoring Instrument // IEEE Trans. Geosci. And Remote Sensing. 2006. V. 44, N 5. IGRSD2. P. 1199–1208.
  17. Bhartia P.K., Wellemeyer C.W. OMI TOMS-V8 total O3 algorithm Theoretical Baseline Document: OMI Ozone Products / P.K. Bhartia (ed.). V. 2. ATBD-OMI-02. version 2.0. 2002.
  18. Kurucz R.L., Furenlid I., Brault J., Testerman L. Solar Flux Atlas from 296 to 1300 nm. New Mexico: National Solar Observatory, 1984.