Vol. 36, issue 01, article # 10

Bobrovnikov S. M., Gorlov E. V., Zharkov V. I., Panchenko Yu. N., Puchikin A. V. Experimental study of the dynamics of the process of laser fragmentation of nitrotoluene and nitrobenzene vapors. // Optika Atmosfery i Okeana. 2023. V. 36. No. 01. P. 73–77. DOI: 10.15372/AOO20230110 [in Russian].
Copy the reference to clipboard
Abstract:

The paper presents the results of the experimental study of the dynamic characteristics of the laser fragmentation/laser-induced fluorescence (LF/LIF) process in nitrobenzene and para-nitrotoluene vapors under synchronized two-pulse laser irradiation. It is shown that if the values of the time delay between the pulses of fragmentation (248.4 nm) and excitation (247.87 nm) of NO-fragments are in the range 20–40 ns, the efficiency of the LF/LIF method can be increased by several times.

Keywords:

laser fragmentation, nitrotoluene, nitrobenzene, laser-induced fluorescence, nitric oxide, NO-fragments

References:

  1. Lin M.-F., Lee Y.T., Ni C.-K., Xu S., Lin M.C. Photodissociation dynamics of nitrobenzene and o-nitrotoluene // J. Chem. Phys. 2007. V. 126, N 6. P. 064310-1–11.
  2. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Konurbaev O.R., Panchenko Yu.N., Puchikin A.V., Tivileva M.I. Eksperimental'noe issledovanie dinamiki protsessa lazernoj fragmentatsii parov nitrobenzola // Izv. vuzov. Fiz. 2020. V. 63, N 2. P. 123–128.
  3. Galloway D.B., Bartz J.A., Huey L.G., Crim F.F. Pathways and kinetic energy disposal in the photodissociation of nitrobenzene // J. Chem. Phys. 1993. V. 98, N 3. P. 2107–2114.
  4. Galloway D.B., Glenewinkel-Meyer T., Bartz J.A., Huey L.G., Crim F.F. The kinetic and internal energy of NO from the photodissociation of nitrobenzene // J. Chem. Phys. 1994. V. 100, N 3. P. 1946–1952.
  5. Wu D.D., Singh J.P., Yueh F.Y., Monts D.L. 2,4,6-Trinitrotoluene detection by laser-photofragmentation–laser-induced fluorescence // Appl. Opt. 1996. V. 35, N 21. P. 3998–4003.
  6. Swayambunathan V., Singh G., Sausa R.C. Laser photofragmentation–fragment detection and pyrolysis–laser-induced fluorescence studies on energetic materials // Appl. Opt. 1999. V. 38, N 30. P. 6447–6454.
  7. Daugey N., Shu J., Bar I., Rosenwaks S. Nitrobenzene detection by one-color laser photolysis/laser induced fluorescence of NO (n = 0–3) // Appl. Spectrosc. 1999. V. 53, N 1. P. 57–64.
  8. Shu J., Bar I., Rosenwaks S. Dinitrobenzene detection by use of one-color laser photolysis and laser-induced fluorescence of vibrationally excited NO // Appl. Opt. 1999. V. 38, N 21. P. 4705–4710.
  9. Shu J., Bar I., Rosenwaks S. NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphonates // Appl. Phys. B. 2000. V. 71, N 5. P. 665–672.
  10. Shu J., Bar I., Rosenwaks S. The use of rovibrationally excited NO photofragments as trace nitrocompounds indicators // Appl. Phys. B. 2000. V. 70, N 4. P. 621–625.
  11. Arusi-Parpar T., Heflinger D., Lavi R. Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 24°C: A unique scheme for remote detection of explosives // J. Appl. Opt. 2001. V. 40, N 36. P. 6677–6681.
  12. Heflinger D., Arusi-Parpar T., Ron Y., Lavi R. Application of a unique scheme for remote detection of explosives // Opt. Commun. 2002. V. 204, N 1–6. P. 327–331.
  13. Wynn C.M., Palmacci S., Kunz R.R., Zayhowski J.J., Edwards B., Rothschild M. Experimental demonstration of remote optical detection of trace explosives // Proc. SPIE. 2008. V. 6954. P. 695407. DOI: 10.1117/12.782371.
  14. Arusi-Parpar T., Fastig S., Shapira J., Shwartzman B., Rubin D., Ben-Hamo Y., Englander A. Standoff Detection of explosives in open environment using enhanced photodissociation fluorescence // Proc. SPIE. 2010. V. 7684. P. 76840L–7. DOI: 10.1117/12.850911.
  15. Wynn C.M., Palmacci S., Kunz R.R., Rothschild M. Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence // Opt. Express. 2010. V. 18, N 6. P. 5399–5406.
  16. Wynn C.M., Palmacci S., Kunz R.R., Aernecke M. Noncontact optical detection of explosive particles via photodissociation followed by laser-induced fluorescence // Opt. Express. 2011. V. 19, N 19. P. 18671–18677.
  17. Bobrovnikov S.M., Gorlov E.V. Lidar method for remote detection of vapors of explosives in the atmosphere // Atmos. Ocean Opt. 2011. V. 24, N 3. P. 235–241.
  18. Bobrovnikov S.M., Vorozhtsov A.B., Gorlov E.V., Zharkov V.I., Maksimov E.M., Panchenko Y.N., Sakovich G.V. Lidar detection of explosive vapors in the atmosphere // Russ. Phys. J. 2016. V. 58, N 9. P. 1217–1225.
  19. Panchenko Y., Puchikin A., Yampolskaya S., Bobrovnikov S., Gorlov E., Zharkov V. Narrowband KrF Laser for Lidar Systems // IEEE J. Quantum Electron. 2021. V. 57, N 2. P. 1–5.