Vol. 36, issue 02, article # 1

Nevzorova T.A., Dudaryonok A. S., Lavrent'ev N. A., Lavrentieva N. N. Calculation of carbon dioxide broadening coefficients of sulfur dioxide lines in the ν1 + ν3 A-type band at room temperature. // Optika Atmosfery i Okeana. 2023. V. 36. No. 02. P. 81–85. DOI: 10.15372/AOO20230201 [in Russian].
Copy the reference to clipboard
Abstract:

Calculated carbon dioxide broadening coefficients of sulfur dioxide lines at a room temperature are presented. The calculations are performed for the ν1 + ν3 band, rotational quantum numbers vary in the ranges of J up to 100 and of Ka up to 20. Based on the experimental data the semi-empirical method parameters are determined; the computed broadening coefficients are in good agreement with the literature data.

Keywords:

line profile parameters, line-broadening, sulfur dioxide, carbon dioxide

References:

  1. Bézard B., Bergh C., Fegley B., Maillard J.-P., Crisp D., Owen T., Pollack J.B., Grinspoon D. The abundance of sulfur dioxide below the clouds of Venus // Geophys. Res. Lett. 1993. V. 20, N 15. P. 1587–1590.
  2. Marcq E., Bertaux J.-L., Montmessin F., Belyaev D., Variations of sulphur dioxide at the cloud top of Venus's dynamic atmosphere // Nat. Geosci. 2013. V. 6, N 1. P. 25–28.
  3. Roth L., Boissier J., Moullet A., Sánchez-Monge A., Kleer K., Yoneda M., Hikida R. An attempt to detect transient changes in Io’s SO2 and NaCl atmosphere // Icarus. 2020. V. 350. P. 113925.
  4. Khayat A., Villanueva G., Mumma M., Tokunaga A. A search for and above Tharsis and Syrtis volcanic districts on Mars using ground-based high-resolution submillimeter spectroscopy // Icarus. 2015. V. 253. P. 130–141.
  5. Herbst E., Dishoeck E.F. Complex organic interstellar molecules // Ann. Rev. Astron. Astrophys. 2009. V. 47. P. 427–480.
  6. Krishnaji, Chandra S. Molecular interaction and linewidth of the asymmetric molecule SO2. II. SO2–CO2 collisions // J. Chem. Phys. 1963. V. 38, N 4. P. 1019–1021.
  7. Ceselin G., Tasinatο N., Puzzarini C., Charmet A.P., Stoppa P., Giorgianni S. CO2-, He- and H2-broadening coefficients of SO2 for n1 band and ground state transitions for astrophysical applications // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203. P. 367–376.
  8. Borkov Yu.G., Lyulin O.M., Petrova T.M., Solodov A.M., Solodov A.A., Deichuli V.M., Perevalov V.I. CO2-broadening and shift coefficients of sulfur dioxide near 4 mm // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 225. P. 119–124.
  9. Dudaryonok A.S., Lavrentieva N.N. Theoretical estimation of SO2 line broadening coefficients induced by carbon dioxide in the 150–300  K temperature range // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 219. P. 360–365.
  10. Dudaryonok A.S., Nevzorova T.A., Lavrentiev N.A., Lavrentieva N.N. Calculation of SO2–CO2 line broadening coefficients // Proc. SPIE. 2022. V. 12341. DOI: 10.1117/12.2645079.
  11. Wilzewski J.S., Gordon I., Kochanov R.V., Hill C., Rothman L.S. H2, He, and CO2 line-broadening coefficients, pressure shifts and temperature-dependence exponents for the HITRAN database. Part 1: SO2, NH3, HF, HCl, OCS and C2H2 // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 168. P. 193–206.
  12. Gordon I.E., Rothman L.S., Hargreaves R.J., Hashemi R., Karlovets E.V., Skinner F.M., Conway E.K., Hill C., Kochanov R.V., Tan Y., Wcisło P., Finenko A.A., Nelson K., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Coustenis A., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Mlawer E.J., Nikitin A.V., Perevalov V.I., Rotger M., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Adkins E.M., Baker A., Barbe A., Canèw E., Császár A.G., Dudaryonok A., Egorov O., Fleisher A.J., Fleurbaey H., Foltynowicz A., Furtenbacher T., Harrison J.J., Hartmann J.-M., Horneman V.-M., Huang X., Karman T., Karns J., Kassi S., Kleiner I., Kofman V., Kwabia–Tchana F., Lavrentieva N.N., Lee T.J., Long D.A., Lukashevskaya A.A., Lyulin O.M., Makhnev V.Yu., Matt W., Massie S.T., Melosso M., Mikhailenko S.N., Mondelain D., Müller H.S.P., Naumenko O.V., Perrin A., Polyansky O.L., Raddaoui E., Raston P.L., Reed Z.D., Rey M., Richard C., Tóbiás R., Sadiek I., Schwenke D.W., Starikova E., Sung K., Tamassia F., Tashkun S.A., Auwera J.V., Vasilenko I.A., Vigasin A.A., Villanueva G.L., Vispoel B., Wagner G., Yachmenev A., Yurchenko S.N. The HITRAN2020 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 277, N 1. 107949.
  13. Müller H.S.P., Brumken S. Accurate rotational spectroscopy of sulfur dioxide, SO2, in its ground vibrational and first excited bending states, n= 0, 1, up to 2 THz // J. Mol. Spectrosc. 2005. V. 232, N 2. P. 213–222.
  14. Bykov A.D., Lavrentieva N.N., Sinitsa L.N. Semi-empiric approach of the calculation of H2O and CO2 line broadening and shifting // Mol. Phys. 2004. V. 102, N 14–15. P. 1653–1658.
  15. Lafferty W.J., Pine A.S., Hilpert G., Sams R.L., Flaud J.-M. The n1 + n3 and 2n1 + n3 band systems of SO2: line positions and intensities // J. Mol. Spectrosc. 1996. V. 176, N 2. P. 280–286.
  16. Radtsig A.A., Smirnov B.M. Spravochnik po atomnoi i molekulyarnoi fizike. M.: Atomizdat, 1980. 280 p.
  17. Gray C.G., Gubbins K.E. Theory of molecular fluids, Volume 1: Fundamentals. Oxford: Clarendon Press, 1984. 626 p.
  18. Graham C., Pierrus J., Raab R.E. Measurement of the electric quadrupole moments of CO2, CO and N2 // Mol. Phys. 1989. V. 67, N 4. P. 939–955.
  19. Bykov A.D., Lavrent'eva N.N., Sinitsa L.N. Sdvigi linij H2O davleniem azota, kisloroda i vozduha v udarnoj teorii Andersona // Optika atmosf. i okeana. 1999. V. 12, N 10. P. 959–966.